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ABSTRACT: 

As insights into RNA’s many diverse cellular roles continue to be gained, interest 

and applications in RNA self-assembly and dynamics remain at the forefront of structural 

biology. The bifurcation of functional molecules into nonfunctional fragments provides a 

useful strategy for controlling and monitoring cellular RNA processes and functionalities. 

Herein we present the bifurcation of the preexisting Spinach aptamer and demonstrate its 

utility as a novel split aptamer system for monitoring RNA self-assembly as well as the 

processing of pre-short interfering substrates. We show for the first time that the Spinach 

aptamer can be divided into two nonfunctional halves that, once assembled, restore the 

original fluorescent signal characteristic of the unabridged aptamer. In this regard, the 

split-Spinach aptamer is represented as a potential tool for monitoring the self-assembly of 

artificial and/or natural RNAs. 
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FLUORESCENT MONITORING OF RNA ASSEMBLY AND PROCESSING  

USING THE SPLIT-SPINACH APTAMER 

Introduction: 

RNA is an exceedingly important molecule in an array of cellular processes (i.e., 

catalysis, gene regulation, and metabolite recognition) beyond its traditionally recognized 

roles involving protein expression. This increased awareness of RNA’s utility calls for new 

tools that can be used to study and monitor RNA self-assembly, structure, and cellular 

dynamics. Split-protein and nucleic acid systems, which rely on the reassociation of 

independent nonfunctional fragments to conditionally restore the desired whole and 

operative moiety, [1,2] represent useful tool for identifying and ascertaining important 

molecular interactions [3] and have the potential to provide new devices for synthetic 

biology and/or biomedical applications. [4] The benefits of these split systems hinge on at 

least two important factors: the involved fragments’ collective ability to readily and stably 

reassociate into the functional complex and their ability to elicit the desired functional 

response or signal. In the first regard, nucleic acids provide an accommodating platform for 

choreographing self-assembling, predefined molecular inter-actions because of their ability 

to form predictable and precise hydrogen bonds between complementary nucleobases. 

[5−7] With respect to this second point, molecules that provide fluorescent outputs are 

thought to offer highly sensitive signals with desirable signal-to-noise ratios. 

RNA’s versatility has been made all the more useful in the developing fields of RNA 

synthetic biology and nanotechnology with the advent of directed evolution techniques 

that may be used to select for novel synthetic RNAs possessing virtually any preconceived 

functionality.8 Using this approach, the previously reported Spinach aptamer was evolved 

and selected for its ability to produce a fluorescent signal when it is complexed with the 

small molecule 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI), a mimic of the 

chromophore found in the green fluorescent protein.9 The scope and utility of the Spinach 

aptamer have been expanded further to include the ability to report the presence of 

various metabolites and, more recently, as a means of quantitatively monitoring protein 

production. [10,11]  

In our view, the bifurcation of the full-length RNA aptamer into two segments 

provides an additional set of future applications that include the ability to monitor and/or 

visualize dynamic self-assembly. Herein, we describe the design of the split-Spinach system 

for monitoring the formation of synthetic RNAs for use in the RNA interference (RNAi) 

pathway as well  as their subsequent processing by the human recombinant dicer enzyme. 

Results and Discussion 
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Previous reports about the Spinach aptamer [10] demonstrated that the third stem 

(from the 5′ end of the full-length molecule) tolerates a range of different sequences, 

including the appendage of various aptamer moieties, without too much loss of function 

(70−80% signal strength of the original Spinach aptamer). Thus, we hypothesized this stem 

to be a suitable point for bifurcation of the full-length Spinach aptamer. As a way to 

selectively control the formation of the bipartite complex and demonstrate its functionality, 

we placed the split-Spinach aptamer in the context of a self-assembling RNA−DNA hybrid 

system, similar to that of Afonin et al. [12,13] The bifurcated stem of the aptamer complex 

was extended using different short interfering RNA (siRNA) sequences (see Figure SI1 of 

the Supporting Information). Three siRNA sequences were tested on the basis of previously 

reported work [4,14] (see the Supporting Information). Using the RNA−DNA hybrid system, 

complementary DNA “blocker” strands were annealed to individual RNA strands to prevent 

the formation of a functional split-Spinach aptamer (Figure 1). The “blocking” DNA strands 

could be selectively displaced by the addition of fully complementary “unblocking” DNA 

strands that could associate with the blocker strands through the 12-nucleotide toehold 

sequences, leaving the split-Spinach blocked stem of the aptamer free to assemble binding 

pocket. 

Analysis of split-Spinach aptamer assembly was conducted using polyacrylamide gel 

electrophoresis (PAGE) and fluorescence spectroscopy. Conformational studies via PAGE 

show that the two aptamer segments, when annealed, produce a single band that migrates 

through the gel at a rate comparable to that of the full-length Spinach aptamer in native salt 

concentrations (Figure 2). In terms of functionality, the DFHBI fluorescence was observed 

only in the presence of both aptamer strands (i.e., DFHBI did not fluoresce in the presence 

of either split-Spinach aptamer alone). Furthermore, the split-Spinach aptamer showed 

fluorescence comparable to that of the full-length Spinach aptamer in the presence of 

DFHBI, indicating that bifurcation of the aptamer does not substantially reduce the binding 

affinity for DFHBI and that the bifurcated aptamer conforms to a tertiary structure 

analogous to that of the full-length Spinach aptamer. 

Complementary blocker and unblocker DNA strands were introduced to 

demonstrate selective immobilization and assembly of the split-Spinach aptamer (Figure 

2). PAGE and fluorescence spectroscopy show that the addition of complementary blocking 

DNA strands prior to the split-Spinach aptamer’s assembly induces the bifurcated aptamer 

to form a nonfunctional DNA−RNA hybrid moiety that prevents the formation of the third 

stem that is critical for aptamer formation. Thus, the split-Spinach aptamer does not fully 

assemble or fluoresce in the presence of the blocker strands but assembles and exhibits 

fluorescence with the removal of the blocker strands via strand displacement when 

complementary unblocker DNA strands are introduced (Figure 2). Of the three siRNA 

sequences tested (validated sequences targeting GFP; two targeting HIV, protease (Pro) 

and Ldr3), only two proved to be suitable for study. The Ldr3 sequence contained a series 
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of four GA repeats that were prone to mispair. In the case of the other two sequences, the 

percent recovery of the functional aptamer upon unblocking at 37 °C was between 38 and 

50%, which was confirmed by analysis of the assembly on native PAGE gels and 

fluorescence spectroscopy. We postulate that the split-Spinach system can be improved by 

tailoring the length and specific sequence of the toehold with the length of the desired 

siRNA sequence. We also saw that we could increase the overall recovery to >60% by 

assembling at 45 °C (see Figure SI2 of the Supporting Information). 

In addition to its ability to monitor RNA self-assembly processes, the split-Spinach 

system can also be used to monitor RNA processing. The aptamer was subjected to selected 

degradation by the recombinant human dicer enzyme, targeting the 3′ overhang on the 

third stem, generating a siRNA (Figure 3). Independent analysis of the predicted product of 

the split-Spinach aptamer after dicing demonstrated no ability to fluoresce (data not 

shown). In the same way that blocking and unblocking DNA strands selectively induce 

fluorescence, dicing of the split-Spinach complex can selectively disrupt the split-Spinach 

aptamer’s functionality, which was corroborated by the absence of fluorescence. Moreover, 

we show a direct correlation among the dicer concentration, siRNA formation, and the 

reduction of the fluorescence signal, further suggesting that the aptamer was selectively 

degraded by dicer processing of the bifurcated stem. 

The split-Spinach aptamer complex, in the context of the DNA−RNA hybrid system, 

provides a successful demonstration of the bifurcated Spinach aptamer in vitro. We show 

that the modification of a previously reported RNA aptamer and fluorophore offers a 

promising tool for monitoring RNA assembly and RNA processing. Given that the split 

system reduces the magnitude of the signal by only ′20% compared to that of the full-

length sequence in vitro, it is anticipated that the split-Spinach aptamer could be used for in 

vivo applications similar to those previously reported for the original aggregate Spinach 

aptamer. [9−11] Alternatively, we hypothesize that the recently reported Spinach2 

aptamer, which offers >3 times the fluorescence intensity of the first-generation Spinach 

aptamer, could be modified in the same fashion to create a programmable bifurcated 

aptamer. [15] The improved sensitivity of the Spinach2 aptamer is attributed to the 

elimination of mismatches in the first and third stems, which thereby improved the overall 

thermostability and folding efficiency of the Spinach aptamer. [15] Using the improved 

stem sequences associated with the Spinach2 aptamer to facilitate programmable assembly 

in the split-Spinach system (as the core of the aptamer sequence remains unchanged) 

would likely provide a better testing ground for future in vivo applications. Regardless of 

the precise stem sequences used, we posit that the split-Spinach concept offers a new tool 

for investigating a variety of RNA assembly and RNA−RNA interactions. [16,17] For 

example, the split construct has potential as a fluorescent signaling device in RNA-based 

sensors and/or programmable circuitry as well as the assembly of RNA nanostructures 
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similar to how the binary malachite green aptamer has been previously reported 

[12,18,19] but without the reported toxicity. [20] 

Materials and Methods: 

Synthesis of the Aptamer and Fluorophore:  

DNA sequences and primers of interest were purchased from Integrated Data 

Technologies (IDT). RNA constructs were synthesized by in vitro transcription with T7 

RNA polymerase from polymerase chain reaction-generated double-stranded DNA 

templates ordered from Integrated DNA Technologies (IDT), followed by 8 M urea−10% 

polyacrylamide gel electrophoresis (PAGE) purification. DFHBI was synthesized according 

to previously published protocols. [9] RNA and DNA sequences used here can be found in 

the Supporting Information. 

Nucleic Acid Assembly Experiments: 

 To control the assembly of the split-Spinach complex, individual RNA sequences 

were annealed to complementary blocker DNA strands by being slowly cooled from 95 °C. 

Blocked RNA strands were mixed in a 1:1 ratio and incubated together for 20 min at 37 °C. 

Mixtures containing unblocker DNA strands and their controls were left to incubate at 37 

°C for 25 min before being loaded into a 7% polyacrylamide gel of 1× HEPES (40 mM 

HEPES) buffer and 1 mM MgCl2. Gels were run at 8 W for 2−3 h at 4 °C. Aliquots of samples 

run on gel were also characterized by fluorescence spectroscopy. Identical assembly 

experiments were conducted using 10 to 12% polyacrylamide gels containing 8 M urea. 

Denaturing gels were run at 40 W for 1−1.5 h at room temperature. Gels were stained with 

Sybr Green II (Invitrogen) and imaged using ChemiDoc MP (Bio- Rad) or FluoroChemQ 

(Protein Simple). 

Fluorimeter Studies: 

The fluorescence of the fully assembled and unblocked Spinach aptamer was 

confirmed with an LS 55 luminescence spectrometer (PerkinElmer). Samples from reaction 

mixtures in assembly and dicer experiments were incubated with 1 mM DFHBI at 37 °C for 

20 min and then loaded into a 40 μL quartz cuvette (Starna Cells, Inc.). Samples were 

excited at 469 nm and emission spectra recorded at 509 nm. 

Dicer Experiments: 

The recombinant human dicer enzyme kit was purchased from Genlantis. Samples 

were incubated overnight at 37 °C in the supplied dicer reaction buffer (Genlantis) or 

HEPES according to the manufacturer’s suggested protocol. Dicing reactions were analyzed 

by PAGE on a 1 mM MgCl2 native 7% PAGE or 8 M urea−10% PAGE gel and by fluorescence 

spectroscopy as described above. 
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Figure 1 

Schematic showing the methods used to control the assembly and processing of the split

system. In steps 1a and 1b, single strands of the aptamer

blocker sequence on the elongated stem. In step 2, the products of steps 1a and 1b are combined to 

form the full Spinach aptamer with DNA blocker strands in place. In step 3, DNA toehold strands 

complementary to their respective DNA blocker strands 

maximizing Watson−Crick base pairs, allowing the elongated stem to bind with itself and form the 

DFHBI binding site and DFHBI to bind and fluoresce. In step 4, dicer cuts the dsRNA

from the 3′ two-nucleotide overhang, destabilizing the binding site and ending fluorescence.

Figures 

Schematic showing the methods used to control the assembly and processing of the split

system. In steps 1a and 1b, single strands of the aptamer were annealed to a complementary DNA 

blocker sequence on the elongated stem. In step 2, the products of steps 1a and 1b are combined to 

form the full Spinach aptamer with DNA blocker strands in place. In step 3, DNA toehold strands 

respective DNA blocker strands “unzip” the DNA from the aptamer by 

Crick base pairs, allowing the elongated stem to bind with itself and form the 

DFHBI binding site and DFHBI to bind and fluoresce. In step 4, dicer cuts the dsRNA

nucleotide overhang, destabilizing the binding site and ending fluorescence.
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Schematic showing the methods used to control the assembly and processing of the split-Spinach 

were annealed to a complementary DNA 

blocker sequence on the elongated stem. In step 2, the products of steps 1a and 1b are combined to 

form the full Spinach aptamer with DNA blocker strands in place. In step 3, DNA toehold strands 

the DNA from the aptamer by 

Crick base pairs, allowing the elongated stem to bind with itself and form the 

DFHBI binding site and DFHBI to bind and fluoresce. In step 4, dicer cuts the dsRNA 21 nucleotides 

nucleotide overhang, destabilizing the binding site and ending fluorescence. 



 

Figure 2 

Monitoring the assembly and fluorescence of the controlled split

representative native PAGE gel (40 mM HEPES buffe

split-Spinach aptamer forms from the blocked complex only when both unblocker strands 

are added. Data represent the Pro

sequence details. (b) Corresponding fluorescence 

Spinach system fluoresces. The split

are added, but fluorescence occurs when both unblockers are added. (c) The percent 

recoveries (following the addition of the D

programmable sequences tested were analyzed in triplicate by native PAGE and 

fluorescence microscopy. 

Monitoring the assembly and fluorescence of the controlled split-Spinach system. (a) A 

representative native PAGE gel (40 mM HEPES buffer and 1 mM Mg2+) confirms that the 

Spinach aptamer forms from the blocked complex only when both unblocker strands 

are added. Data represent the Pro-siRNA sequences. See the Supporting Information for 

sequence details. (b) Corresponding fluorescence data confirm that the unblocked split

Spinach system fluoresces. The split-Spinach system fails to fluoresce when blocker strands 

are added, but fluorescence occurs when both unblockers are added. (c) The percent 

recoveries (following the addition of the DNA unblocking strands) of the two 

programmable sequences tested were analyzed in triplicate by native PAGE and 
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Figure 3: 

Monitoring dicer processing. (a) PAGE gels demonstrate that dicer selectively processes 

double-stranded RNA in the third stem of the split

indicates that the dicer cuts the programmable stem of the assembled the split

system into �21-nucleotide segments. No dicing was observed when RNA is annealed to 

the blocker strand. Note that the contrast was increased for the ladder portion of the 

denaturing PAGE gel to increase visibility. (b, c) As the concentration of the dicer increases, 

the concentration of the split-Spinach system decreases and fluorescence decreases.

 

 

 

 

 

 

Monitoring dicer processing. (a) PAGE gels demonstrate that dicer selectively processes 

in the third stem of the split-Spinach aptamer. The denaturing gel 

indicates that the dicer cuts the programmable stem of the assembled the split

nucleotide segments. No dicing was observed when RNA is annealed to 

. Note that the contrast was increased for the ladder portion of the 

denaturing PAGE gel to increase visibility. (b, c) As the concentration of the dicer increases, 

Spinach system decreases and fluorescence decreases.
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Monitoring dicer processing. (a) PAGE gels demonstrate that dicer selectively processes 

Spinach aptamer. The denaturing gel 

indicates that the dicer cuts the programmable stem of the assembled the split-Spinach 

nucleotide segments. No dicing was observed when RNA is annealed to 

. Note that the contrast was increased for the ladder portion of the 

denaturing PAGE gel to increase visibility. (b, c) As the concentration of the dicer increases, 

Spinach system decreases and fluorescence decreases. 
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INTEGRATION OF FAITH AND LEARNING 

 

“For by one Spirit we were all baptized into one body -- Jews or Greeks, slaves or free -- and all 

were made to drink of one Spirit. For the body does not consist of one member but of many. If 

the foot should say, "Because I am not a hand, I do not belong to the body," that would not 

make it any less a part of the body. And if the ear should say, "Because I am not an eye, I do 

not belong to the body," that would not make it any less a part of the body. If the whole body 

were an eye, where would be the hearing? If the whole body were an ear, where would be the 

sense of smell? But as it is, God arranged the organs in the body, each one of them, as he chose. 

If all were a single organ, where would the body be? As it is, there are many parts, yet one 

body. The eye cannot say to the hand, ‘I have no need of you,’ nor again the head to the feet, ‘I 

have no need of you.’” 

     - 1 Corinthians 12: 13-21 [RSV] 

 

 When I think of a community I often have in mind the articles around which a 

community gathers: a common place, activity, experience. These articles of the community 

become inseparable from the people of the community’s routine, behaviors, and 

personhood: these articles are formational to the community members. We are “Foot 

people” say these communities, or we are “hand people. We’re dedicated to doing well 

whatever it is we do.” What are we to make, then, of a diverse community? What are we to 

make of a community that gathers around its diversity, rather than something specific and 

shared? What do you do with a community of hands and feet, eyes and ears? 

 While I associate the Church with the common faith summarized in the Apostle’s 

Creed, I also consider the Church to reflect God’s diversity within the Trinity, as well as His 

creative agency. God built us for community as a reflection of His communal nature within 

the trinity. But our need for community is further reflected in our giftings. We have been 

created to feed the community in a manner anointed by God, without which the community 

of God is incomplete.  

I think the same is equally true of our ways of knowing. In my experience 

throughout the UScholars program, we have not been united around a common discipline 

the way that a community might develop within the Biochemistry major, or the theology 

program, or amongst education majors. Rather, we have been united by our mutual, yet 

diverse, participation in the community of Faith through the act of learning. With the loss of 

any individual from this community, we would lose a unique testament to God’s provision, 

truth and revelation, because we would lose a unique way of knowing God. We have a body 

that is can no longer function at its best. 
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In this sense, our diverse ways of knowing are all directed toward God as a 

doxological ways of knowing that are as multivalent as our community members. Dylan 

worships God with the study of Greek, as Lisa worships when she teaches Physics to 

undergrads, as Abby worships by taking fecal samples, as Gabe worships through the 

studying privilege, as Scott and Lauren worship through researching development, as 

Caroline worships through operating on patients in South Africa. Worship is an embodied 

experience, and every part of the body must participate.  

This is what it means to be the people of God: not to gather around an article or a 

belief, but to see, glorify and pleasure in God’s revelation through His people, and to never 

neglect His unique work in your sisters and brothers, because it is in this way that we learn 

about God. Nay, “learning” is far too mechanical of a term: we learn how fly chromosomes 

segregate; we learn how to operate a shotgun; we learn how to write a good sentence. We 

are renewed, reconciled, and transformed by a God who reveals Himself to His people 

through the Created order and through His scriptures. This is what it means to have faith. 

This is what it means to learn. This is what it means to be the body of Christ.  
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