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Abstract 

Information is an important pre-requisite for the onset of life, which means that any study 

of the origins of life must also address the origin of information. Biological information today is 

generally conceptualized in terms of the Central Dogma of Biology, with DNA as a digitized 

code within the cell. However, here I propose that biological information - particularly in 

prebiotic conditions, where information would have first arisen - is better understood in terms of 

the three-dimensional structure of a molecule. In this regard, RNA serves as an interesting 

example. Evidence for information storage in RNA can be seen in a number of ways. One of 

these is that, instead of experiencing pressure to maintain a particular sequence of nucleotides, 

RNA experiences evolutionary pressure to maintain a particular three-dimensional structure 

through mechanisms such as covariation. Additionally, covariation allows for the relative fluidity 

of a nucleotide sequence while motifs provide a specific set of building block that RNA can use, 

both of which would increase the likelihood of producing an informational molecule. 

Conceptualizing biological information in terms of a functional three-dimensional structure, 

rather than a linear code, provides a useful paradigm for understanding how biological 

information could have arisen. Because the three-dimensional structure is less dependent on 

primary sequence, the likelihood of producing an informational molecule through random chance 

would increase in prebiotic conditions. Although I am proposing RNA as the best candidate for 

the origin of biological information, it is possible that other molecules may also be plausible 

candidates for the origin of information as long as they share these qualities with RNA. This 

method of understanding biological information also has implications for alternative models of 

the origin of information, including those proposed by the Intelligent Design community, which 

tend to focus primarily on DNA.  



 

 

Biological Information and Its Origins: The Curious Case of RNA 

Life is characterized and sustained by a number of information rich biological processes 

that govern cellular functions, and greatly contribute to its overall complexity. Because of this, 

any study of the origins of life must address the origin of biological information as well. 

Although it is fundamental to life today, the origin of biological information remains largely 

neglected. However, the following three assumptions seem to provide a reasonable starting point 

in the endeavor to provide an explanation for the beginnings of information. First, it is important 

to keep in mind that life and information need not have arisen simultaneously. In fact, it seems 

far more likely that information would have arisen prior to the onset of life, as cellular life is 

completely dependent on the flow of information. Second, information in biological systems 

today is largely understood in terms of the Central Dogma of Biology, in which information 

passes from DNA to RNA to protein, but prebiotic information, or information at the cusp of life, 

would undoubtedly have been simpler and looked much different. For example, one explanation 

of the origin of life, described in the RNA world hypothesis, posits that the earliest cells were so 

different from modern cells that they did not contain DNA or protein at all, but were run entirely 

by RNA. Finally, although our focus on the Central Dogma predisposes us to understand 

biological information in terms of a linear string of nucleotides or amino acids, similar to a 

digitized code, it is most fully realized as information in three-dimensional forms, when it can 

enact a specific change or reaction in a cell. These interactions are accomplished through 

molecules possessing specific shapes, orientations, or arrangements that communicate with other 

molecules that have different molecular affinities. A particular reaction or function resides in the 

shape and (chemical environment afforded by the shape) of a molecule, suggesting that the 

information residing in the three-dimensional shape may be equally, if not more, important 
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than the information encoded in the linear arrangement of monomers. In light of these three 

assumptions, I would propose that RNA provides an informative model for conceptualizing the 

origin of biological information. However, it is important to note that other molecules may also 

make plausible candidates for the first informational molecule so long as they share the 

characteristics of RNA that I describe throughout this paper. 

Before exploring the possibility of RNA as the first informational molecule, it is first 

necessary to understand what information is and how it functions. Information is closely related 

to, although not interchangeable with, the entropy in a given system, and, in many cases, the 

difference between the possible and observed entropy of that system (Shannon, 1949). When 

considering this in terms of biological information, one might think of all the possible 

combinations a string of nucleotides in a particular gene could adopt as the potential entropy of 

the system and the combination of nucleotides that the gene actually adopts as the observed 

entropy of the system. The difference between the two entropies would then correspond to the 

amount of information that a linear string of nucleotides might convey. To increase the total 

possible entropy, one could either increase the length of a sequence or increase the number of 

possible variables for each unit. By increasing the total possible entropy, the potential 

informational capacity for a molecule would also increase due to the possibility of a larger 

difference between the possible and actual entropy of a molecule. However, this difference alone 

does not amount to information. In order for the information in a system to be fully realized, it 

must be about something. Information is found, not in a sequence or shape, but in the 

relationship between that sequence and the system it describes. (Adami, 2004). A string of 

nucleotides or a protein cannot carry information unless the sequence or shape correlates to a 

particular function, such as turning off a gene or catalyzing a reaction.  



3 

 

Until recently, RNA has been seen as merely a messenger between DNA and protein, but 

it is now also known to play numerous cellular roles including catalyzing reactions and 

regulating genes, earning it the title of the “dark matter” of the cell (Ridihough, 2005). These 

functions are rooted in the ability of RNA to adopt a variety of three-dimensional shapes, and it 

is in the configuration of these shapes that information is stored. By its nature, information can 

only convey meaning through its relationship to its environment (Deacon, 2011). Unlike DNA, 

which consistently forms into the well-known double helix, RNA possesses the ability to self-

fold through Watson-Crick and noncanonical base-pairing, thus producing a variety of three 

dimensional structures, which enables RNA to perform a variety of functions. Because the 

shapes themselves are what have biological significance, it seems that the informational content 

of RNA is found more in the three-dimensional structure of the molecule than the linear 

sequence of its nucleotides. Evidence of this idea can be found in the way particular shapes are 

favored and evolutionarily conserved (Grabow et al., 2013). The informational content of RNA 

being found more in its shape than its linear sequence makes it an interesting case study for the 

origin of biological information. We will see that these shapes are not only more likely than a 

particular sequence to arise by chance, but, since they also convey a biological function, they 

meet the criteria for being considered informational molecules. This ability to function would 

also be more relevant to the emergence of life than the relatively inert DNA.           

The need for an informational molecule that directly relates to its environment is an 

excellent starting point in making the case for RNA as the first informational molecule, 

particularly when compared to DNA. Information is efficiently stored in the linear string of DNA 

nucleotides due to its ability to form stable and predictable base pairs, and this information is 

even stored redundantly due to the ability of DNA to bind its own complementary strand. 
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However, it needs a complex system of non-DNA molecules to process the information and 

actualize its message within a cell. On its own, DNA is relatively inert, and the complex 

interpreting system required for DNA makes it ill-suited as a candidate for the origin of 

information. RNA, on the other hand, seems to be a more plausible candidate due to its ability to 

spontaneously fold into a variety of three-dimensional structures that are capable of performing a 

variety of dynamic functions, including catalysis and gene regulation. Through its three-

dimensional structure, RNA would be able to communicate information about its environment 

independent of an interpreting system, since its shape would both hold and communicate the 

information on its own.  

Although DNA and RNA are chemically very similar, RNA differs from DNA in several 

substantial ways that make the formation of these structures possible. Perhaps the most notable 

difference is that RNA, unlike DNA, does not interact with its own complementary strand. 

Instead, it acquires its three-dimensional structure from the intramolecular interactions of 

nucleotides within a single strand of RNA. This allows RNA to base-pair to itself, creating a 

number of unique three-dimensional structures and making RNA more structurally similar to 

protein and, by extension, more functionally similar as well. Another noteworthy difference is 

the expanded repertoire of RNA base-pairing. While DNA is much more limited to the iconic 

Watson-Crick canonical base pairs, where guanine binds exclusively with cytosine and adenine 

with thymine, RNA is able to form several thermodynamically stable noncanonical base pairs 

(Figure 1A), which expand the possible structures it can adopt. These noncanonical base pairs 

are characteristic of the interactions forming the tertiary structures of RNA, while Watson-Crick 

base pairs are used to form the hairpins and stem loops of the secondary structures (Figure 1B). 

Because information, by its nature, must be about something, the order of nucleotides in a strand 
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of RNA is less important 

than the shape which 

results from that 

sequence. It is through its 

shape that an RNA 

molecule interacts with its 

environment through its 

own particular function. 

The various three- 

dimensional structures of 

RNA are able to interact 

with other molecules, 

including protein, other 

RNA molecules, or even 

other parts of the same RNA strand. The storage of information in a three-dimensional structure 

makes RNA an excellent candidate for the origin of information as its variety of functions would 

be useful for the onset of life.  

Another notable difference between DNA and RNA is that, for DNA, there is 

evolutionary pressure to maintain individual nucleotides with high informational content, but, for 

RNA, the pressure to maintain information results in the preservation of secondary and tertiary 

structure rather than the primary sequence. This tendency can be observed in the covariation of 

nucleotides that often occurs in RNA in an attempt to preserve structural features throughout the 

course of evolution (Figure 2). In covariation, if a mutation occurs to cause a change in a base, 

Figure 1. (A) Both Watson-Crick and noncanonical base pairs are pictured 

(Allison, 2012). (B) RNA exhibits primary, secondary, and tertiary levels of 

organization. Secondary structure contains Watson Crick base pairs, while 

tertiary structure can have both Watson-Crick and noncanonical base pairs 

(Hecht and Huc, 2007). 
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then the corresponding base that it pairs with can also be observed to mutate in order to retain a 

certain secondary structure (Parsch et al, 2000). In this way, a Watson-Crick GC base pair may 

change to an AU pair without disrupting the overall structure. Covariation allows a certain 

amount of fluidity to a sequence so that not every change in base will result in the loss of 

function. This makes an RNA molecule less dependent on its primary sequence and also 

increases the likelihood of randomly producing an RNA of a particular shape, since multiple 

sequences can produce the same structure. Although the primary sequence is important, it 

appears that the identity of each nucleotide is less important than the shape that is produced from 

that sequence. This further demonstrates how RNA primarily stores its information in its tertiary  

structure.  

 

Another example of the importance of three-dimensional structure in information storage 

is the structural motif. An RNA motif is a semi-conserved sequence that is found in remarkably 

high abundance and produces a characteristic three-dimensional structure through the 

conservation of specific hydrogen-bonding contacts. These recurring motifs function 

Figure 2. On the left, a sequence alignment is shown with positions that contain covarying 

nucleotides in color. On the right, the role these nucleotides play in the formation of 

secondary structure is shown. The secondary structure is maintained even though the 

nucleotides change.  
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independently of the context in which they are found (Moore, 1999). This results in the 

conservation of identifiable three-dimensional shapes held together by hydrogen-bonding 

networks between RNA nucleobases. These nucleobases are conserved only to the degree that 

they can maintain those contacts that define and hold the motif together. Many different motifs 

exist in RNA including the 11-nucleotide motif, T-loop, kink turn, GNRA tetraloop, right angle 

motif (RA) (Figure 3), 

and GA minor motif 

(Moore, 1999). These 

motifs are often fairly 

small, but they play a 

pivotal role in helping to 

direct local and long-

range RNA folding as 

well as providing the 

basic building blocks 

through which more 

complex secondary and tertiary structures are formed (Grabow and Jaeger 2014). By directing 

the folding of RNA sequences into particular structures, motifs help to ensure that a sequence 

will fold into a functionally useful shape. In addition to demonstrating the importance of three-

dimensional structure, the high abundance of motifs in RNA and the way in which they facilitate 

the folding and function of RNA provide the groundwork for understanding how functional 

structures could have arisen prebiotically.  

Figure 3. (A) GNRA tetraloop  (B) RA turn (Grabow et al., 2012). Positions 

marked with an N can be any base, while an R can be either A or G, and Y 

can be either C or U. 
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The pressure placed on an RNA molecule to maintain its shape, and therefore function, 

throughout the course of evolution can also be seen as evidence for the importance of three-

dimensional structure. When considering the informational content of a single nucleotide in a 

strand of RNA, one might think of the informational content of that nucleotide in terms of bits. 

For RNA, where there are four possible nucleotides - adenine, guanine, cytosine, and uracil (A, 

G, C, and U) - the most bits of information a single nucleotide can contain is two according to 

the Shannon equation for the determination of maximal entropy (Adami, 2004): 

𝐻 = − ∑ 𝑝(𝑖)𝑙𝑜𝑔2𝑝(𝑖) =  𝑙𝑜𝑔2 (4) = 2 bits

𝑖=𝐺,𝐶,𝐴,𝑇

 

If p(i) is ¼ for each nucleotide at maximal entropy, then the number of possible bits of 

information is two. Although we can determine the maximal entropy of a string of nucleotides, it 

is not possible to determine the actual entropy of a nucleotide based on a single sequence, 

making it impossible to estimate the informational content of that nucleotide. However, by 

comparing sequences of nucleotides that are evolutionarily related and functionally equivalent, 

one can more accurately determine the bits of information contained by each nucleotide in a 

given position. This is accomplished by calculating the probability that a particular nucleotide 

will appear at a certain position in the sequence.  For example, if a number of evolutionarily 

related sequences are aligned and every nucleotide at position sixty-five is a G, then that 

nucleotide contains two bits of information. However, if only 50% of the nucleotides at position 

sixty-five in the sequence are G’s then there is only one bit of information at that location. 

Nucleotides that contain a large amount of information are generally those with evolutionary 

pressure to remain the same due to their functional importance. They may be a necessary 

component of a binding site or essential for maintaining a particular structure.   
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To determine whether or not nucleotides that were essential for tertiary structure 

formation would be high in informational content, the bits of information for each nucleotide in a 

tetrahydrofolate (THF) riboswitch (Figure 4) were calculated via the method previously 

described and using an alignment of fifty-seven different sequences from a variety of organisms 

(Figure 4A). A riboswitch is a structural element associated with a portion of an mRNA 

sequence that is not translated into a protein, but can regulate either transcription or translation 

through the binding of a particular molecule, which in this case is tetrahydrofolate (Ames et al., 

2010). The primary three-dimensional contacts that take place within the molecule occur as an 

interaction between nucleotides 65-71 and 185-191 (Figure 4D). The informational content of 

each nucleotide in these regions shows a great deal of variation, with each nucleotide containing 

Figure 4. (A) A section of the sequence alignment for the THF riboswitch (Ames et al., 2010). (B) Secondary 

structure of a THF riboswitch with a line drawn to indicate the long range tertiary contact (Huang et al., 2011). (C) 

Tertiary structure of the THF riboswitch (Huang et al., 2011). (D) Bits of information for a nucleotide at a given 

position. Nucleotides that participate in the tertiary contact shown in (B) are colored orange and green. 
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anywhere between one and two bits of information. Although the reasonably high informational 

content of nucleotides in these regions suggests that they convey an important function, the high 

degree of variation may cause one to question how important these intramolecular contacts 

actually are. If the three-dimensional structure of the molecule is the most important element of 

the riboswitch, and this structure is maintained by the contact of these two regions, then one 

might expect the informational content of the nucleotides in these regions to be uniformly high. 

While this does not seem to be the case, it does not necessarily mean that the structure is not 

important or maintained through all 57 organisms. The necessity of a particular contact or base-

pair being made can also be analyzed by observing covariation in an RNA molecule.    

When aligning sequences, as was done for the analysis of informational content, 

covariation will decrease the occurrence of the dominant nucleotide, thus reducing the calculated 

informational content for the nucleotide at that position. By checking for covariation in the 

sequence alignment, we see that some of the variation in informational content is explained by 

this phenomenon. Because covariation is evidence of the importance of tertiary structure, the 

observed variation in informational content may not imply insignificance for the structure. 

Rather, the covariation of these nucleotides supports the concept that it is the shape of RNA that 

makes it meaningful and functional within its context rather than the primary sequence of 

nucleotides. Furthermore, when considering the origin of biological information, the variation in 

informational content of the nucleotides in RNA may have actually been beneficial for the first 

informational molecule. If a nucleotide is less constrained in terms of its identity, it will not 

contain as many bits of information, but it will also be easier to produce an RNA molecule of a 

particular shape. Having a variety of primary sequences that will yield a certain structure 

increases the likelihood of that structure being formed. Because of this, the efficiency with which 
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information is stored decreases, but the likelihood of producing a functional shape increases. The 

decreased informational content required of each nucleotide would then make it easier for RNA 

to cross what I will call the “information barrier” at the origin of information.  Similar to the way 

a decreased energy of activation makes a chemical reaction easier to initiate, the fewer bits the 

first informational molecule needs, the easier it will be for the first informational molecule to be 

produced.  In this way, decreased information storage in RNA makes it a well-suited candidate 

for the origin of information. 

The decreased informational capacity of RNA is related to the fact that many different 

primary sequences can yield the same secondary or tertiary structure. In the case of DNA, 

because its capacity to store information is directly dependent on the primary sequence, the 

probability of randomly producing a specific string of nucleotides that is relevant to its 

environment is quite low. To calculate the probability of generating a particular sequence, one 

simply needs to find the probability of a specific nucleotide occurring and raise it to the power of 

however long the 

sequence of interest is. 

The probability of a 

nucleotide occurring at 

a particular position 

will always be ¼ since 

the identity of a 

nucleotide is not 

affected by those 

adjacent to it. For 

Figure 5. Relative stabilities of each possible Watson-Crick base pair. GC 

and AU pairs are the most stable while bases pairing to themselves and AC 

pairs are the least stable. 



12 

 

example, a specific 12 nucleotide sequence would have a (¼)12, or 1/16,777,216 chance of 

occurring. Although the same would be true for producing a specific 12 nucleotide sequence of 

RNA, RNA is less tied to the specificity of the primary sequence in terms of its informational 

content. This is beneficial for the production of information in RNA as the probability of 

generating some kind of three-dimensional structure is relatively high. In a typical 25 nucleotide 

sequence, where every nucleotide is represented, the percentage of nucleotides involved in base- 

pairing is 40-50% (Yarus, 2010). This would virtually guarantee that a few thermodynamically 

stable structures would result for any random sequence of 25 nucleotides. This large degree of 

base-pairing can be attributed to the relatively high thermodynamic stability of 8 of the 16 

possible base-pairs (Figure 5), with the AG pairs and, to a lesser extent, the GU pairs stability 

being dependent on the stability of adjacent base pairs. Because about half of the possible base 

pairs are relatively stable, it is reasonable to assume that, in a random sequence of nucleotides, 

about half of the bases would form stable base pairs. The abundance of stable base pairs makes 

the possibility of forming these contacts fairly high, which also increases the probability of 

forming a functional RNA molecule. As was alluded to in the case of covariation, a number of 

different primary sequences can even produce the same tertiary structure. There still may be 

16,777,216 different sequences, but many combinations would now exist that could produce the 

same shape and therefore convey the same information. For example, 11,880 of the 16,777,216 

possible sequences for a 12 nucleotide RNA would be capable of forming four base pairs (See 

Appendix A). Because it is the tertiary structure that allows the information of RNA to be fully 

actualized, the probability of randomly producing an informationally potent molecule from a 

string of nucleotides is much higher for RNA than it is for DNA.  
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In addition to the increased statistical likelihood of a particular fold being produced, 

certain folds would be favored based on their inherent thermodynamic stability and rate of 

polymerization.  Although the specific functions of different RNA or protein molecules are often 

thought of as the result of evolutionary selection for biologically useful purposes, Michael 

Denton makes the case for there being a relatively small number of possible RNA folds which 

are achieved by adopting a structure corresponding to the minimum free energy possible for a 

given sequence (Denton et al., 2002; Denton et al., 2003). This means that, even though there 

may be several ways in which an RNA molecule can fold, it will favor the configuration that 

makes it the most stable. The most stable structures may be achieved through a number of 

different paths and would be selected for based on thermodynamic stability. In this way, we can 

see why commonly recurring structures, such as RNA motifs, would be found in such high 

abundance. Additionally, further selection can take place in prebiotic systems on the basis of 

varying rates of polymerization. Small increases in rates of polymerization can lead to an 

increase in the abundance of certain molecules, and the ability of a molecule, or system of 

molecules, to replicate would greatly accentuate the potential increase in abundance (Chen and 

Nowak, 2012). Selection for certain molecules, either through thermodynamic stability or rates 

of polymerization, would lead to an increased likelihood of informationally useful RNA 

molecules being formed from a random sequence of nucleotides. In addition to this, a “fold-first, 

function-second” approach to RNA folding would suggest that early life had perhaps taken 

advantage of the already structurally useful RNA and simply enhanced its functional properties 

through natural selection. In this scenario, prebiotic RNA would have existed, ready-made, with 

relevant information. 
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Although the case for RNA as the first informational molecule is compelling, it is not 

without its problems, many of which are shared with the RNA World Hypothesis, which is still 

largely debated (Bernhardt, 2012). One such problem is the question of whether it is plausible 

that ribonucleotides could have been generated in prebiotic conditions. RNA is a considerably 

complex molecule and determining probable synthetic pathways in prebiotic conditions has 

proven to be quite challenging. However, despite the difficulty, scientists continue to make 

progress in solving this dilemma. A plausible pathway has recently been developed for the 

synthesis of pyrimidine ribonucleotides in pre-biotic conditions (Powner et al., 2009), and, while 

this does not completely answer the problem, it does seem to be a promising step towards 

providing a mechanism by which RNA could have existed in prelife conditions. 

Another common argument against the RNA World Hypothesis is the notion that 

catalysis is a function associated only with relatively long RNA molecules, and it is unlikely that 

such long strands of RNA would be forming in any degree of abundance. This is problematic 

since the need for a functional RNA molecule to be long would pose a problem for 

understanding the origin of information in terms of RNA, as it would decrease the likelihood of 

forming functional RNA molecules. However, just as with the prebiotic synthesis of 

ribonucleotides, promising research shows that exceedingly short RNA can possess catalytic 

functions. There have been several cases of very short sequences being capable of performing 

reactions, including the self-cleavage of a seven nucleotide duplex (Vlassov et al., 2005) and the 

aminoacylation of an RNA substrate with a ribozyme truncated to only five nucleotides (Yarus, 

2011). These “mini-ribozymes” provide support for the functionality of ribozymes that are 

considerably shorter in length than the ribozymes we see in nature today. In addition, the 

probability of producing such small ribozymes is considerably greater than the production of 
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their more extensive counterparts. This is because it is not only easier to polymerize a shorter 

RNA strand, but it also requires a smaller pool of those polymerized RNA strands to cover the 

sequence space necessary to promote a functional ribozyme. Although these mini-ribozymes are 

less efficient than longer ribozymes (Vlassov et al., 2005), they do provide a simpler possible 

starting point for catalytic RNA molecules. The simplification of ribozymes would allow for a 

prebiotic system in which the production of a functioning RNA molecule, capable of carrying 

information, is possible. This would make the participation of RNA in the origin of information 

more plausible. 

 Although it seems possible that RNA could have developed as an informational 

molecule in prebiotic conditions, in order to be significant for the origin of life, it would also 

need to develop the ability to replicate. To be considered life, a system must have more bits of 

heritable information than the bits required for its initiation (Joyce, 2012), which would require 

RNA to have the ability to replicate if it were to be a viable candidate for the origin of 

information. While there has been some progress in finding a stand-alone self-replicating RNA 

(Ma and Yu, 2006), cooperative networks of RNA molecules, working to replicate the entire 

system, present a promising new perspective on the origin of RNA replication and the origin of 

information. These cooperative networks of RNA replicators have been demonstrated to exhibit 

favorable growth dynamics and are actually able to out-compete single molecule replicators. Not 

only are they more efficient, but, through cooperation, RNA networks are also able to evolve 

greater complexity over time (Vaidya et al., 2012). To take this a step further, it is also possible 

that, after these potential replicating complexes were formed, the most efficient replicating 

system could have been selected for through a prebiotic selection process based on 

polymerization and replication rates and stability (Nowak and Ohtsuki, 2008; Chen and Nowak, 
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2011). This would mean that selective pressures could have been at work even before the 

existence of the cell, and would have been capable of selecting for the most efficient replicator. 

Cooperative replication not only helps to answer the question of how prebiotic information 

eventually shifted to life, but it also follows the proposed model of information as relatively 

sequence independent. Because replication would be dependent on the interaction of different 

molecules, the sequences could be somewhat fluid due to the fact that individual nucleotides 

could change as long as these interactions were maintained.   

While RNA provides a compelling model for understanding the origin of information, 

many of the arguments that have been made here in favor of RNA could possibly be applied to 

other molecules, including protein. For instance, one of the primary reasons that RNA is such an 

excellent case study for considering the origin of information is that its three-dimensional 

structure is an essential part of this information. However, a similar argument could be made for 

protein since it is also highly dependent on its tertiary/quaternary structure and uses it to interact 

with its environment. In addition to this, another way in which the case for RNA and protein 

overlap is that Denton’s argument regarding the favoring of certain RNA folds is just as 

applicable to protein as it is to RNA. But despite their similarities, one of the ways in which 

RNA would make a better candidate than protein for the first informational molecule is its 

reduced number of monomers. Proteins are made using 20 amino acids, but, in comparison, RNA 

is only comprised of four nucleotides. Although the nucleotides are more complex than the 

amino acids, once they were synthesized it would be easier to produce a functional RNA from a 

small sequence, as was seen in the case of the mini-ribozymes. A second advantage of RNA is 

that it would seem to produce a more straightforward path to information in the way we observe 

it today. RNA is capable of retrosynthesis, which is the process by which RNA is used as the 
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template for the synthesis of DNA instead of the other way around (Goff, 1990). Information has 

never been seen to flow from protein to RNA or DNA, but information can flow in either 

direction through RNA. This seems to put RNA in a central position for the flow of information 

and makes it a more plausible candidate for the origin of information than protein. Finally, 

because the folding rules of RNA are simpler and more limited, it would be easier to produce 

something that would fold predictably, which would be advantageous for the origin of 

information. 

The connection between information and the three-dimensional structure of a molecule 

may have a wide range of implications for studies of the origin of information and life, 

particularly in the Intelligent Design community. In his book Signature in the Cell: DNA and the 

Evidence for Intelligent Design, a leading figure of the Intelligent Design community, Stephen 

Meyer, has proposed that the information we see in today’s cells, carried primarily by specific 

strings of nucleotides in DNA, could not have arisen by random processes. Here I would like to 

address the way in which Meyer’s fixation on DNA as the first informational molecule is 

problematic and neglects other viable mechanisms for the origin of biological information.  

One of Meyer’s arguments for information being a product of intelligent design is that the 

probability of generating a sequence of DNA that relates to a biological function, as well as the 

molecules needed to make this information biologically relevant, is so low as to be essentially 

impossible.  But this idea makes the assumption that early life would have had to look fairly 

similar to the way it does today, and disregards the possibility that information could have arisen 

in a form different than DNA. He suggests that “any minimally complex protocell resembling 

cells we have today would have required not only genetic information, but a sizeable preexisting 

suite of proteins for processing that information” (2009). But, in this statement, Meyer neglects 
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the possibility that the earliest forms of life may not have needed such a complex informational 

processing system. He seems to be implying that biological information must have always 

looked like the genetic code, where a three-nucleotide codon in DNA codes for a specific amino 

acid. In this scenario, DNA, RNA, and protein would all have had to come together at just the 

right time and in just the right way to produce the necessary components of informational 

processing, but this is not necessarily the case. The RNA World Hypothesis posits an alternative 

view on this subject by proposing that the earliest cells may not have needed DNA and protein in 

order to function because RNA is capable of both storing genetic information and performing a 

variety of functions within a cell (Higgs and Lehman, 2014). The idea that all the components of 

biology’s Central Dogma would have to come together at once ignores the possibility that the 

earliest forms of life may have looked quite different than they do today and would have 

undoubtedly been much simpler. 

Part of the reason Meyer gives for suggesting that functional DNA could not have arisen 

through random chance is that, because the bases of adjacent nucleotides do not interact with 

each other, there are no forces influencing the order in which nucleotides are assembled. A 

guanine preceding a uracil is just as probable as an adenine preceding a cytosine since there is no 

interaction between adjacent nucleotides in either RNA or DNA. Meyer suggests that this is a 

problem, not only for DNA, but for RNA as well since “for strands of RNA to perform catalytic 

functions (including self-replication), they, like proteins, must display specific arrangements of 

their constituent building blocks” (2009). But this makes the assumption that it is only the 

primary sequence of nucleotides that dictates the informational content of RNA. This would be a 

valid argument if the origin of information were approached from the perspective of DNA since 

the primary sequence is the most important aspect of its informational content and any natural 
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influences on the order of nucleotides in DNA would actually diminish its informational storage 

capacity (Polanyi, 1969). But while it is true that there are no interactions between adjacent bases 

that influence the order of nucleotides in DNA and RNA, and that this is actually a good thing 

for DNA, it is not true that the primary sequence is the main conveyor of information in RNA or 

that extremely specific sequences are needed for RNA to be functionally relevant. As I have 

attempted to show, the tertiary structure of RNA is what carries the bulk of its information 

because this is what allows it to interact with its environment, and the same tertiary structure can 

be produced by a variety of different primary sequences. This lowered dependence on primary 

sequence is due in part to the pressure to adopt the structure with the lowest free energy, as was 

suggested by Denton (2002). Therefore, if information can be stored in the three-dimensional 

structure of a molecule, there actually would be natural laws that would favor the formation of 

certain informational shapes over others. Additionally, by influencing which three-dimensional 

structures are selected for, factors such as covariation and thermodynamic stability can indirectly 

exert pressure on the primary sequence by favoring those sequences which provide the most 

stable structures. This provides an elementary example as to how natural laws can in fact 

influence the order of nucleotides. 

 Finally, Meyer dismisses much of the RNA World Hypothesis and instead focuses 

exclusively on DNA as an informational molecule. He says that “the theory did not solve the 

problem of biological information – it merely displaced it” (2009). This argument assumes that 

information in RNA works in a similar fashion to that of DNA. However, as has been 

demonstrated throughout this paper, the two are quite different in terms of the ways in which 

they store their information and the ability of each to facilitate the rise of information and be 

selected for in prebiotic conditions. The problem is not merely shifted from one place to another, 
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but it is understood in a completely different fashion when considered in terms of RNA. The 

ability of RNA to store information in its three-dimensional structure and the natural laws that 

favor the formation of certain structures over others change the way in which we can think about 

the origin of information. Difficulties intrinsic to the nature of DNA, such as the formation of 

specific sequences accompanied by processing tools, are less problematic in regard to RNA. 

With this understanding, the problem is not simply displaced onto RNA; rather, a deeper 

understanding of biological information from the standpoint of three-dimensional structures 

actually solves many of the problems that Meyer associates with DNA’s perceived role in the 

origin of information. For reasons already stated, very few scientists studying the origin of life 

would view DNA as a realistic candidate for the origin of information. 

 RNA seems remarkably well-suited for the onset of biological information. While it may 

be possible that a different biomolecule is responsible for the origin of information, this 

biomolecule would have to share certain characteristics with RNA. RNA’s three-dimensional 

structure would allow for the earliest informational molecules to be functionally relevant to their 

surroundings, which is an essential component of information storage.  The ability of the first 

informational molecules to function would also allow the most efficient of these to be selected 

for via natural law and thereby increase in abundance. In addition, the dependence of information 

in RNA on secondary and tertiary structure, rather than primary sequence, allows for the 

sequence of nucleotides to be more fluid, which would decrease the initial hurdle associated with 

the emergence of information. Because a variety of different sequences can make the same 

secondary and tertiary contacts, the random production of a functional RNA molecule becomes 

far more likely. This way of understanding biological information also has implications for 

alternative models of the origin of information, including those proposed by the Intelligent 
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Design community, which tend to focus primarily on DNA. In light of the way that RNA 

functions and stores information, it provides a compelling new way of understanding the origin 

of information. 

 

Appendix A 

 This appendix outlines the calculations used to determine that, in a 12-nucleotide 

sequence, 11,880 of the 16,777,216 possible sequences would base-pair four times.   

 This calculation is best conceptualized in terms of dot-bracket notation for RNA where 

each nucleotide is either a dot, meaning it does not base-pair, or a left or right bracket. Matching 

brackets represent base-pairing nucleotides. This means that the number of right and left brackets 

must be even. For example, the dot-bracket notation for the 12 nucleotide hairpin loop in figure 2 

is ((((….)))). There are 12! ways of arranging the dots and brackets in this 12 nucleotide 

sequence, but, because there are four each of three identical symbols, the actual number of 

different arrangements is 
12!

4!4!4!
 which equals 831,600 possible different arrangements. However, 

the sequence is so short that it is reasonable to assume that all the right brackets must precede left 

brackets in order to produce a stable structure. When the dots are removed, the total of possible 

arrangements of brackets in relation to each other is 
8!

4!4!
 which equals 70. Of these 70, only one 

will have a structure where all the right brackets precede the left brackets. The number of 

possible sequences in a 12 nucleotide strand is then 
831,600

70
 which is 11,880. However, the 

number of realized structures may actually be less than this since not each of these sequences 

will yield a thermodynamically stable structure. 
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Appendix B: Integration of Faith and Learning 

 Both faith and science approach the world in different ways, but each one is useful for 

providing a more complete understanding of the reality in which we live. Science seeks to 

understand how the natural world works, while faith seeks to understand God and, by extension, 

what humanity’s relationship to the natural and supernatural ought to look like. Science achieves 

its goal by studying repeating patterns in nature, and faith pursues understanding in a variety of 

ways, including experience, reason, and natural and divine revelation. However, problems arise 

when these two different ways of understanding the world are seen as mutually exclusive, or an 

attempt is made to answer a question with science that can only be answered by faith or vice 

versa. Using scientific epistemology to understand ideas relating to faith or the supernatural 

proves rather fruitless as science is only equipped to deal with the natural world. This does not 

invalidate the existence of the supernatural, but it simply means that science is not able to detect 

its existence since science depends on the observation of repeating patterns. In a similar way, 

using faith to understand the patterns we see in the world around us can ultimately keep us from 

analyzing these patterns and learning useful information about the underlying mechanisms of our 

environment. When considering the origin of information, the Intelligent Design community 

seems to make the mistake of answering a scientific question by introducing a designer who 

could not be subject to scientific investigation. This can lead to a block in the scientific endeavor 

to understand a particular question.  

Using faith to answer an unanswered scientific question can be considered a “God of the 

gaps” approach and seems to be employed by Stephen Meyer in his attempt to explain the origin 

of information. In a “God of the gaps” approach, a gap in scientific knowledge is explained by 

means of the supernatural. Meyer argues against this claim, saying that “when we observe effects 
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that we know only agents can produce, we rightly infer the presence of a prior intelligence even 

if we did not observe the action of the particular agent responsible” (Dembski and Kushiner, 

2001). However, the assumption made in this statement is that we know only intelligent agents 

can produce information, but, based on all the research done in the area, this is not an assumption 

common to the scientific community as a whole. The claim that we “know” only intelligent 

agents can produce information disregards the consensus of a large part of the scientific 

community. This “God of the gaps” approach is not only a scientifically invalid means of 

approaching the origin of information, but, for people of faith, it can also undermine faith in God 

when scientific evidence is produced that suggests God may not be responsible for a particular 

gap in knowledge. In one of his letters from prison, Dietrich Bonhoeffer explains why he finds 

the “God of the gaps” approach problematic: 

If in fact the frontiers of knowledge are being pushed further and further back 

(and that is bound to be the case), then God is being pushed back with them, and 

is therefore continually in retreat. We are to find God in what we know not in 

what we do not know; God wants us to realize his presence, not in unsolved 

problems but in those that are solved. That is true of the relationship between God 

and scientific knowledge. (Bonhoeffer, 1953) 

Using God to fill in the gaps of scientific knowledge will only serve to diminish him as those 

gaps begin to be closed. We must try to fill in the gaps of scientific knowledge through scientific 

means lest we find God reduced when we discover that we do not need him in order to 

understand these questions after all. This attempt to overlap the methodologies of faith and 

science is not only harmful to the scientific pursuit of knowledge, but it can be harmful to the 

pursuit of faith as well. 
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In the same way that faith cannot answer scientific questions, science cannot be used to 

answer the foundational questions of faith. Unlike science, faith does not depend on determining 

patterns in the natural world, but rather on divine revelation through, scripture, experience, and 

nature. In Personal Knowledge; towards a Post-Critical Philosophy, Michael Polanyi says of 

Christianity that “Christian faith does not express the assertion of observable facts and 

consequently you cannot prove or disprove Christianity by experiments or factual records” 

(1958). Because faith seeks to answer questions that are not defined by the natural world, 

scientific study of the natural world can neither prove nor disprove faith. However, the 

evangelical Christian community has often felt threatened by advances in scientific knowledge 

when they feel as if science is trying to disprove faith in some way. This can be seen in the 

evangelical church’s reaction to evolution, which was perceived as negating the creative nature 

of God. Unfortunately, the perception that science could in some way disprove faith has caused a 

rejection in the evangelical community of science altogether. This can have serious ramifications 

for these communities. In some branches of the evangelical Christian community, children are 

often brought up believing that certain elements of faith and science are mutually exclusive or 

that science poses a threat to faith in some way. This sets up a false dichotomy between the two 

and forces people to ultimately choose between them. But when forced to choose, a person will 

miss all the knowledge that the other side has to offer. 

 Although the methodologies that faith and science employ do not overlap, both can still 

provide meaningful information for the other. Because God is understood to be the creator of the 

natural world, gaining more knowledge about this world can allow Christians to understand their 

creator in a more complete way. Additionally, new scientific discoveries can help Christians 

discern which biblical interpretations are the most consistent with the world in which we live. 
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This allows for a more robust understanding of divine revelation. Polanyi suggests that new 

scientific discoveries “may engender conceptual reforms which will renew and clarify, on the 

grounds of modern extra-religious experience, man’s relation to God. An era of great religious 

discovery may lie before us” (1958). New scientific discovery need not be perceived as a threat 

against faith, but rather as an aid in reforming some of the ways that we understand faith, which 

would result in a deeper understanding of Christianity.  

So it seems that faith is enriched by scientific pursuits, but science can also benefit from 

faith. Faith provides a guide for what we expect the world to look like. For example, because 

Christianity believes in a relational God, it would not make sense to have a universe with no 

possibility of life and, by extension, relationship. When confronted with equally valid and 

scientifically robust models, having some basis for understanding what we should expect from 

the world can help direct the way in which we choose to take our scientific exploration. By 

allowing faith and science to interact, members of the scientific community are provided with 

some idea of what the world ought to look like, and those in the religious community gain access 

to knowledge, which can cause them to more thoughtfully engage with their own faith and gain a 

deeper understanding of their Creator. 

 Because some branches of the evangelical church have been historically wary of science, 

an important component of scientific scholarship for people of faith today is an attempt to 

reconcile the strained relationship between the two. While both can benefit from the knowledge 

that the other has to offer, it is up to those intimately connected with each one to enact this 

reconciliation. Christian members of the scientific community are in a unique position to initiate 

dialogue between the two seemingly opposed camps. Although the methodologies applied in 

science must remain robust and consistent with the methodologies of the scientific community as 
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a whole, Christian scientists are able bring a different perspective to science and maintain that 

there are alternate avenues by which we can understand the world in a meaningful way. In 

addition to this, they can also be ambassadors of science to the Christian community and 

encourage the church to not dismiss the knowledge that science has to offer. Because of this 

unique position, reconciliation becomes an important aspect of what it means to work in the 

sciences as a person of faith, and it is an ideal that I hope to incorporate into my own work in the 

scientific field. 
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