
Seattle Pacific University Seattle Pacific University 

Digital Commons @ SPU Digital Commons @ SPU 

Honors Projects University Scholars 

Fall 12-7-2019 

Where's the Rigor? A Study of Direct Instruction vs. Inquiry-Based Where's the Rigor? A Study of Direct Instruction vs. Inquiry-Based 

Learning in Math Education Learning in Math Education 

Brianna Rae Warner 
Seattle Pacific University 

Follow this and additional works at: https://digitalcommons.spu.edu/honorsprojects 

 Part of the Curriculum and Instruction Commons 

Recommended Citation Recommended Citation 
Warner, Brianna Rae, "Where's the Rigor? A Study of Direct Instruction vs. Inquiry-Based Learning in Math 
Education" (2019). Honors Projects. 147. 
https://digitalcommons.spu.edu/honorsprojects/147 

This Honors Project is brought to you for free and open access by the University Scholars at Digital Commons @ 
SPU. It has been accepted for inclusion in Honors Projects by an authorized administrator of Digital Commons @ 
SPU. 

http://digitalcommons.spu.edu/
http://digitalcommons.spu.edu/
https://digitalcommons.spu.edu/
https://digitalcommons.spu.edu/honorsprojects
https://digitalcommons.spu.edu/univ-scholars
https://digitalcommons.spu.edu/honorsprojects?utm_source=digitalcommons.spu.edu%2Fhonorsprojects%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/786?utm_source=digitalcommons.spu.edu%2Fhonorsprojects%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.spu.edu/honorsprojects/147?utm_source=digitalcommons.spu.edu%2Fhonorsprojects%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages


i 
 

Contents 

Introduction.................................................................................................................................. 

Background.................................................................................................................................. 

Methodology................................................................................................................................ 

Findings........................................................................................................................................ 

Direct Instruction Analysis........................................................................................................... 

Curriculum A...................................................................................................................... 

Curriculum B..................................................................................................................... 

Inquiry-Based Learning Analysis................................................................................................. 

Curriculum C..................................................................................................................... 

Curriculum D..................................................................................................................... 

Conclusion: Where Do We Go From Here?.................................................................................. 

Synthesized Lesson Plan.............................................................................................................. 

Day 1............................................................................................................................. 

Day 2.............................................................................................................................. 

Days 3-5......................................................................................................................... 

Reflection.................................................................................................................................... 

Glossary....................................................................................................................................... 

Works Consulted......................................................................................................................... 

Appendix: Faith and Learning...................................................................................................

1 

3 

10 

13 

16 

16 

18 

21 

21 

23 

27 

28 

28 

33 

38 

43 

45 

46 

49 

 



 

Introduction 

 
Is direct instruction or inquiry-based learning a more effective way to teach 

mathematics?  This question is the source of an ongoing discussion and topic of research that is 

permeating the world of mathematics education.  In my honors project, I investigated this topic 

of research by focusing my study around the following question: How do direct instruction and 

inquiry-based learning curricula integrate rigor into their divergent approaches when presenting 

content to high school mathematics students, based on the expectation for rigor as defined by the 

Common Core State Standards?  I explored this question by conducting an analysis of high 

school mathematics curricula that employ different teaching strategies. In order to narrow the 

focus of my analysis, I focused on two contrasting approaches to designing curriculum—direct 

instruction and inquiry-based learning.  For the purpose of this project, I will define direct 

instruction as a traditional style of teaching in which knowledge is simply and directly 

communicated by the teacher to the students, and I will define inquiry-based learning as a non-

traditional style of teaching in which students actively construct their knowledge through 

investigation.1  Table I further illustrates the characteristics of direct instruction vs. inquiry-based 

learning.2 

In order to narrow the scope of my project even further, I selected the trigonometry unit 

in two direct instruction and two inquiry-based learning curricula to be the focus of my analysis.  

The curricula that I selected were chosen because of their alignment to the Common Core State 

Standards, which is an essential component of the methodology that I designed for this project. 

 
1 Healey, Mike (2005). “Linking Research and Teaching: Exploring Disciplinary Spaces and the Role of Inquiry-Based 
Learning.” Reshaping the University: New Relationships between Research, Scholarship, and Teaching (p. 67). New 
York City: Open University Press. 
2 Ibid. 
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My exploration of the different curricula begins with a literature review that examines 

different perspectives regarding how mathematics is being taught in the United States’ education 

system.  Particularly, this literature review examines contrasting views on inquiry-based 

learning, an argument for why it is important to differentiate math instruction and how to do it, 

and an analysis of how current-day curricula promote teaching math.  The next section of my 

project includes a framework for my analysis of the direct instruction and inquiry-based learning 

curricula.  Essentially, I evaluate how well these four curricula satisfy the expectation of rigor in 

mathematics instruction as outlined by the Common Core State Standards.  Specifically, I 

analyze how each component of rigor—conceptual understanding, procedural skill and fluency, 

and applications—is integrated into the direct instruction curricula and the inquiry-based 

learning curricula.  Then, I compile the results from my analysis and draw a conclusion that 

seeks to answer the question of where should mathematics educators go from here in regards to 

designing rigorous lesson plans for their classes.  In the next section of my project, I synthesize 

the components of the different curricula into a five-day lesson plan on trigonometric functions.  

This lesson plan is intended to provide an example of how math instruction can be differentiated 

in a way that includes elements of both a direct instruction curriculum and an inquiry-based 

learning curriculum.  The final section of my project is a reflection in which I evaluate my lesson 

plan in terms of its synthesis of different instructional strategies and its integration of the three 

components of rigor. 

My research topic is significant because it addresses a serious issue in today’s education 

system, namely, an absence of rigor in high school mathematics curricula as evidenced by low 

standardized test scores in mathematics as well as by students’ lack of preparation for college-

level math classes.3  According to the High School Publishers’ Criteria for the Common Core 

State Standards, mathematics education in the United States has not adequately prepared students 

for higher level classes in mathematics.4  My project seeks to further investigate this issue by 

examining how different styles of curricula are structured and how they present the same 

learning standards in different ways.  In the next section of this paper, I will highlight some of 

the influential research that has been conducted on direct instruction and inquiry-based learning 

in mathematics classrooms as a way to situate this project in the context of our public 

educational system. 

 

 

 

 

 

 

 

 

 
3 National Governors Association, Council of Chief State School Officers, Achieve, Council of the Great City Schools, 
and National Association of State Boards of Education (2013). High School Publishers’ Criteria for the Common Core 
State Standards for Mathematics (p. 2). Washington D.C.: National Governors Association Center for Best Practices 
and Council of Chief State School Officers. 
4Ibid.  
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Background 

 
Overview 

My project addresses how mathematics is being presented in high school curricula with 

a focus on direct instruction versus inquiry-based learning.  In order to provide context for my 

project and show its relevance in math education, I reviewed eight pieces of literature that will 

provide a solid background for the curricula analysis that I conducted.  Two of them express 

varied perspectives in regards to the controversial subject of whether or not an inquiry-based 

approach to teaching mathematics is effective.  Three of these pieces of literature identify 

various issues with teaching strategies in mathematics classrooms and how these issues are 

ineffectively and inefficiently meeting the different learning needs of students.  The other three 

pieces of literature analyze and critique the process of teaching and learning mathematics in our 

present-day classrooms.  In particular, these three pieces of literature focus on answering the 

question of why math teachers need to change how they are instructing their students.  In 

essence, this literature review is intended to provide background information and establish the 

context for direct instruction and inquiry-based learning in math education. 

 

Teaching and Learning Mathematics 

In this section of the literature review, I will focus on the teaching and learning of 

mathematics in our present-day classrooms.  In What’s Math Got to Do with It?, Jo Boaler 

argues that our math education system is based on an objective that is full of errors.  She believes 

that students aren’t given the opportunity to experience “real” mathematics until they get to 

graduate school, which means that the vast majority of students will never experience “real” 

mathematics in our education system.  Boaler’s argument is based on the assertion that up until 

graduate school, students are only learning about the rules and tools that they will need in order 

to become mathematicians, but merely learning about the rules and tools is not a very engaging 

way in which to learn mathematics. 

One significant issue regarding math education that Boaler discusses in his article is the 

level of support math teachers receive from their administration.  For example, she describes a 

particular math classroom that he observed as a positively ideal learning environment because of 

how the students were actively engaged in collaborative learning; yet despite the success that 

was happening in this classroom, the teacher was told that she could “no longer teach in this 

way.”5  Instead of supporting the inspiring learning that was taking place in this teacher’s 

classroom, the school administration chose to listen to a small group of parents who were 

insisting that direct instruction was the only way in which math could be properly taught.6 

Another issue regarding teaching and learning of mathematics that Boaler focuses on in 

her article is the way in which students experience mathematics.  As Boaler puts it, “Good 

students use strategies that make them successful – they are not just people who are born with 

some sort of math gene, as many people think.”7  However, it is a common notion in our society 

that people are either good or bad at math, and once students believe that they are bad at math, 

they lose confidence in their ability to understand it.  Moreover, mathematics is oftentimes 

viewed in a negative light by people.  As Boaler recounts, “When I tell people that I am a 

 
5 Boaler, Jo (2008). What’s Math Got to Do with It? (p. 2-12). London: Penguin Books. 
6 Ibid. (p. 12). 
7 Ibid. (p. 13). 
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professor of mathematics education, they often shriek in horror, saying that they cannot do math 

to save their lives.”8  This stigma associated with math has a lot to do with the way in which 

mathematics is being taught.  Mathematics is viewed by many students as a boring and an 

uninteresting subject because they find their experience in math classrooms to be unengaging. 

 

Issues in Mathematics Education 

In A Mathematician’s Lament, Paul Lockhart expands on this argument that 

mathematics instruction fails to be engaging.  In his lament, Lockhart provides us with a searing 

account on how the present system of mathematics education is doing an outstanding job at 

destroying students’ natural curiosity and interest in making patterns.  Lockhart writes, “If I had 

to design a mechanism for the express purpose of destroying a child’s natural curiosity and love 

of pattern-making, I couldn’t possibly do as good a job as is currently being done in 

contemporary mathematics education.”9  In particular, Lockhart argues that the way in which 

students are being taught math is giving them a false conception of what mathematics is and how 

it is useful to us.  Lockhart is strongly opposed to mandatory testing and he argues that teachers 

should not have to limit their instruction to simply meeting a set of curriculum standards.  

Lockhart asserts that “there is surely no more reliable way to kill enthusiasm and interest in a 

subject than to make it a mandatory part of the school curriculum.”10  However, if we don’t make 

math a mandatory part of the school curriculum, how are schools supposed to be held 

accountable for teaching math to all students?  While Lockhart’s lament undoubtedly brings up 

several key points regarding why teachers need to change how they are teaching mathematics to 

their students, it also raises several questions concerning the practicality of his arguments. 

Keith Devlin responds to some of these questions in “Lockhart’s Lament—The Sequel.”  

Devlin begins his response by stating that while Lockhart brings up many excellent points about 

how mathematics should be taught, the implementation of such ideas is just not realistic.11  

Lockhart laments the fact that teachers are required to follow a curriculum in their classroom 

because he believes that it limits their ability to teach mathematics in a creative and engaging 

way that will cultivate an appreciation for it in the minds of students.  Devlin responds by saying 

that curricula are a necessary component of mathematics instruction.  Devlin argues that since 

not every math teacher is well-qualified to teach math, they will not all be able to teach math 

without having a curriculum to follow.  However, Devlin also argues that a thorough curriculum 

should not limit a teacher’s ability to teach beyond the text.12  Furthermore, Devlin insists that 

while developing a love of mathematics in students is a nice idea, it is realistically unnecessary.  

Devlin asserts that “industry needs few employees who understand what a derivative or an 

integral are, but it needs many people who can solve a differential equation.”13  Thus, Devlin 

concludes that while Lockhart’s ideas may sound ideal, they are not feasible enough to transform 

our present-day mathematics education system.  Nonetheless, both Devlin and Lockhart bring up 

valid points on how curricula should guide, but not limit, mathematics instruction in the 

classroom. 

 
8 Ibid. (p. 4). 
9 Lockhart, Paul (2002). A Mathematician’s Lament (p. 2). New York City: Bellevue Literary Press. 
10 Ibid. (p. 8). 
11 Devlin, Keith (2008). “Lockhart’s Lament – The Sequel.” Devlin’s Angle (p. 2). Washington D.C.: Mathematical 
Association of America. 
12 Ibid. 
13 Ibid. (p. 3). 
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Inquiry-Based Learning as Effective 

In his article titled “Linking Research and Teaching: Exploring Disciplinary Spaces and 

the Role of Inquiry-Based Learning,” Mike Healey argues that inquiry-based learning provides 

students with a better understanding of the concepts that they are being taught.  Healey argues 

that by being actively involved in the research of a particular discipline, students will have a 

stronger understanding of the foundational concepts for that discipline.  Inquiry-based learning is 

a teaching strategy that promotes active learning and gets students involved in research.14  What 

Healey means by “research” in this article is the construction of knowledge in a specific 

discipline; and he believes that it is important for students to be taught how different types of 

knowledge are assembled depending on the discipline.  Healey notes that there are three 

dimensions to the design of every curriculum.  The first dimension refers to the emphasis of the 

curriculum is on research content or on research processes and problems.  The second dimension 

focuses on whether the students are treated as the audience or as the participants in the 

curriculum.  The third dimension is on whether the teaching in the curriculum is teacher-focused 

or student-focused.  In terms of these dimensions, Healey asserts that inquiry-based learning 

curricula emphasize research processes and problems, treat students as participants, and focus on 

the student.15  According to Healey, student-focused approaches in curricula are focused on 

having students be active participants in class by guiding them in constructing their own 

knowledge.16  However, it is important to realize that there is a difference between how a 

curriculum is written and how the teacher decides to use it as a tool for presenting the content 

because the teacher could still use a traditional style of curriculum to design a lesson that is 

inquiry-based and promotes active student engagement in class. 

Healey describes inquiry-based learning as a “form of learning that is driven by a 

process of inquiry.”17  In his critique of direct instruction, Healey asserts that teaching is about 

more than simply transmitting information that is already known.  Furthermore, he argues that 

direct instruction is only geared towards meeting the needs of the “most able students.”18  In his 

argument for linking research and teaching, Healey acknowledges that many teachers hold the 

belief that students need to understand certain concepts and be able to perform certain procedures 

depending on the discipline before they will be able to contribute anything to the research of that 

discipline.  Thus, students are not being given the opportunity to participate in their academic 

community until much later in their education.  This reality needs to change, and Healey believes 

that inquiry-based learning is the way in which to bring about this change.  Healey argues that 

students get to engage in a vast range of diverse experiences in classrooms that utilize inquiry-

based learning curricula, and he writes that “research-based learning structured around inquiry is 

one of the most effective ways for students to benefit from the research that occurs in a specific 

discipline.”19  While Healey observes that research and teaching are typically not linked in 

classrooms, he ultimately argues that for the purposes of pedagogical variety and student growth 

towards independence in learning, research and teaching need to be linked in the classroom.20  

 
14 Healey (2005). “Linking Research and Teaching” (p. 67). 
15 Ibid. (p. 69). 
16 Ibid. (p. 70). 
17 Ibid. (p. 73). 
18 Ibid. 
19 Ibid. (p. 74). 
20 Ibid. (p. 75). 
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Thus, Healey provides us with an argument as to why inquiry-based learning should be 

implemented in all curricula. 

 

Inquiry-Based Learning as Ineffective 

In contrast to Healey’s perspective on inquiry-based learning, Paul Kirschner provides 

us with a different perspective on inquiry-based learning.  In his article “Why Minimal Guidance 

During Instruction Does Not Work: An Analysis of the Failure of Constructivist, Discovery, 

Problem-Based, Experiential, and Inquiry-Based Teaching,” Kirschner argues that inquiry-based 

learning is ineffective.  He grounds his argument against inquiry-based learning in research on 

human cognitive architecture that has consistently shown that instruction with a minimal amount 

of guidance is less effective (i.e. students do not walk away from the lesson with a clear 

understanding of the important concepts) and less efficient (i.e. students do not learn the material 

as quickly) than direct instruction.  He defines direct instruction as instruction that provides 

complete explanations of concepts and procedures to students, and he defines inquiry-based 

learning as a teaching strategy that requires students to construct concepts and procedures for 

themselves.21  However, Kirschner asserts that students should not be expected to construct the 

important concepts and procedures of a subject for themselves. 

Kirschner discusses the structure that makes up human cognitive architecture in order to 

illustrate the ineffectiveness and inefficiency of inquiry-based learning.  He begins this 

discussion by defining learning in terms of long-term memory.  Kirschner states that learning can 

be described as a “change in long-term memory.”22  According to Kirschner, working memory 

plays an important role in learning because it is the “cognitive structure in which conscious 

processing occurs.”23  However, a student’s working memory has a very limited capacity for 

processing new information that has not yet been stored in the student’s long-term memory.24  

Inquiry-based learning heavily relies upon students’ working memories because it is designed to 

have students search for and discover concepts and procedures.  Thus, Kirschner argues that 

since inquiry-based learning does not fit with what we know about human cognitive architecture, 

it is an ineffective teaching strategy. 

Furthermore, Kirschner includes evidence on inquiry-based learning that supports his 

claim of it being an ineffective and inefficient teaching strategy.  Kirschner cites several 

controlled experiments in which the conclusion was that students should be instructed directly 

instead of indirectly.  In particular, Kirschner discusses a study that found inquiry-based learning 

to be successful if and only if students were engaged in direct instruction experiences that 

conveyed foundational knowledge before they began the learning that was driven by inquiry.25  

According to Kirschner, other studies on this topic have shown that inquiry-based learning 

typically results in students having more misconceptions and an incomplete conceptual 

understanding of a subject.26  Based on evidence from various studies of human cognitive 

architecture in relation to inquiry-based learning, Kirschner provides us with a critical argument 

 
21 Kirschner, Paul A., John Sweller, and Richard E. Clark (2006). “Why Minimal Guidance During Instruction Does 
Not Work: An Analysis of the Failure of Constructivist, Discovery, Problem-Based, Experiential, and Inquiry-Based 
Teaching.” Educational Psychologist (p. 76). London: Routledge. 
22 Ibid. 
23 Ibid. (p. 77). 
24 Ibid. 
25 Ibid. (p. 82). 
26 Ibid. (p. 84). 
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as to why curricula should focus solely on direct instruction in order to avoid what he believes to 

be the ineffectiveness and inefficiency of inquiry-based learning. 

 

Differentiating Math Instruction 

In this next section, I will focus on identifying various issues with teaching strategies in 

mathematics classrooms.  Furthermore, how these issues are ineffectively and inefficiently 

meeting the different learning needs of students.  In her article titled “Why and How to 

Differentiate Math Instruction,” Amy Lin discusses the necessity of differentiating teaching 

strategies in mathematics classrooms.  One major issue that Lin examines in her article is the 

lack of equity in terms of diverse learning needs in mathematics classrooms.  Lin argues that 

since every student learns mathematics differently, teachers need to account for these learning 

differences in their instruction.  In particular, Lin notes that not only does every student have 

different needs when it comes to learning, but they also have varying levels of mathematical 

ability based on their previous years of instruction.  Lin argues that this difference between 

students’ mathematical knowledge is a particularly challenging issue for teachers of grades 6-

12.27 

In order to account for these differences in mathematical ability and learning needs, Lin 

asserts that teachers need to incorporate big ideas, prior assessment, and choice into their lessons.  

She observes that many teachers feel limited by curriculum requirements, and so they focus their 

instruction on equipping students to meet narrow learning goals.28  However, she argues that it is 

impossible to differentiate instruction that is formulated around too narrow of an idea.29  Thus, 

Lin believes that big ideas are essential to effectively differentiating mathematics instruction 

because they form the framework for getting students to think about the fundamental principles 

of mathematics.30  Moreover, Lin argues that prior assessment is a necessary component of 

effective math instruction because it provides teachers with important information regarding 

what their students need from the instruction that they receive.  She also advocates for providing 

students with some element of choice either in how they learn a particular mathematical concept 

or in the follow-up activity for that lesson.31 

Overall, Lin states that in order to differentiate math instruction efficiently, “teachers 

need manageable strategies that meet the needs of most of their students at the same time.”32  

One suggestion for a manageable strategy that Lin gives in her article is asking open questions 

during instruction.  Open questions are inclusive questions that are designed for a differentiation 

in responses based on each student’s understanding.33  These types of questions allow students of 

all mathematical levels to participate, and they help to correct the common misperception that 

many students have of mathematics being black or white.34  Other strategies that Lin suggests are 

developing differentiated tasks around the same big idea and creatively incorporating student 

voice in the lesson.  Essentially, this article provides teachers with strategies for differentiating 

 
27 Lin, Amy, and Marian Small (2010). “Why and How to Differentiate Math Instruction.” More Good Questions: 
Great Ways to Differentiate Secondary Mathematics Instruction (p. 2). New York City: Teachers College Press. 
28 Ibid. (p. 4). 
29 Ibid. 
30 Ibid. 
31 Ibid. (p. 6). 
32 Ibid. (p. 7). 
33 Ibid. (p. 10). 
34 Ibid. 
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mathematics instruction and it advocates for the importance of differentiating how students are 

being taught. 

 

Learning Needs in Mathematics Classrooms 

Similar to Lin’s argument, Mazlini Adnan, in “Learning Style and Mathematics 

Achievement among High Performance School Students,” argues that teachers need to use a 

variety of teaching strategies in order to meet the different learning needs of students.  Adnan 

argues that some students learn better from direct instruction while other students prefer inquiry-

based learning.  According to Adnan, this preference for either direct instruction or inquiry-based 

learning is dependent on how each student processes information.35  He conducted a study to 

determine whether or not there was a correlation between learning styles and high performance 

in mathematics.  His results showed that “the relationship between active learning styles and 

mathematics achievement is very weak.”36  Inquiry-based learning incorporates a high level of 

active learning in the classroom, which naturally benefits students who have active learning 

styles.  However, since the students with active learning styles typically had lower mathematics 

achievement than their peers in Adnan’s study, it would seem that active learning is not being 

given a prominent position in math classrooms.  Thus, Adnan’s study illustrates how 

mathematics instruction is not meeting the learning needs of all students. 

The work of Roza Leikin in “Exploring Mathematics Teacher Knowledge to Explain 

the Gap Between Theory-Based Recommendations and School Practice in the Use of Connecting 

Tasks” further explores the issue that Adnan identifies with teaching strategies in mathematics 

classrooms.  In particular, Leikin analyzes why “teachers find it difficult to teach multiple 

solution strategies to problems.”37  Leikin argues that it is very important for mathematics 

teachers to intentionally provide opportunities in their classrooms for students to solve problems 

in different ways because it will help to develop their students’ conceptual understanding of 

mathematical principles.  The solution to this issue of math teachers not teaching multiple 

solutions to problems that Leikin provides us with in her article is centered on the idea of 

incorporating multiple-solution connecting tasks into mathematics instruction.  Leikin defines a 

multiple-solution connecting task as a task that combines different mathematical concepts in 

such a way that it can be solved in multiple ways.38  Essentially, these are tasks that can be 

completed using different procedures and strategies and allow for a divergence in how students 

think about and approach them.  Leikin asserts that mathematics instruction in the United States 

does not utilize multiple-solution connecting tasks.  However, Leikin cites studies that show 

while multiple-solution connecting tasks are not part of mathematics instruction in the United 

States, Germany, and Israel, they are part of mathematics instruction in China and Japan.39 

Despite the research that supports implementing multiple-solution connecting tasks into 

mathematics curricula, Leikin observes that this implementation is not actually happening in the 

classroom.  Leikin argues that this gap between theory and practice in teaching strategies is a 

 
35 Adnan, Mazlini (2013). “Learning Style and Mathematics Achievement among High Performance School 
Students.” World Applied Sciences Journal (p. 392). Malaysia: IDOSI Publications. 
36 Ibid. (p. 396). 
37Leikin, Roza, and Anat Levav-Waynberg (2007). “Exploring Mathematics Teacher Knowledge to Explain the Gap 
Between Theory-Based Recommendations and School Practice in the Use of Connecting Tasks.” Educational 
Studies in Mathematics (p. 349). Germany: Springer Science + Business Media B.V.  
38 Ibid. (p. 350). 
39 Ibid. (p. 351). 
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result of teachers’ focus in the classroom being mainly on meeting curriculum standards.40  In 

particular, Leikin asserts that teachers consider multiple-solution connecting tasks to be an 

“insecure environment” because students may get confused by the existence of more than one 

solution to a problem.41  Leikin argues that the problems and tasks that teachers assign to their 

students are result orientated in regards to the curriculum standards.42  Thus, Leikin concludes 

her article by advocating for a change in mathematical curriculum and testing in order to 

cultivate a classroom setting in which multiple-solution connecting tasks could be reasonably 

incorporated into the instruction. 

 

Connection to this Project 

The effectiveness and efficiency of direct instruction versus inquiry-based learning in 

high school math classrooms is an ongoing discussion and topic of research and there are valid 

arguments that support both sides of the debate.  The purpose of my project is not to advocate for 

either direct instruction or inquiry-based learning; rather, its purpose is to provide a descriptive 

curricula analysis of these contrasting approaches to teaching mathematics and design a five-day 

lesson plan that employs the strengths of both approaches.  The five-day lesson plan that I wrote 

for this project takes into account the findings from the various studies on effective teaching 

strategies for mathematics that were discussed in this literature review.  While no lesson plan is 

flawless, the lesson plan for this project is intended to provide an example for how math 

instruction can be differentiated in a way that includes elements of both a direct instruction and 

an inquiry-based learning approach to teaching.  In summary, this literature review has explored 

different issues and perspectives related to how mathematics is being taught in order to construct 

the setting in which my analysis and synthesis of direct instruction and inquiry-based learning 

curricula will take place. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
40 Ibid. (p. 366). 
41 Ibid. 
42 Ibid. 
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Methodology 

 
The framework that I developed for my analysis of the direct instruction and inquiry-

based learning curricula is focused on examining how well each curriculum meets the three 

expectations for rigor in math education that are presented in the Common Core State Standards.  

As mentioned previously in the introduction, experts believe that mathematics education in the 

United States has failed to provide students with a strong foundation from which future 

mathematical knowledge can be built.43  One reason for this failure is that curricula are focused 

on covering a broad expanse of topics, which results in very little time spent going in depth on 

any particular mathematical topic.44  In an attempt to resolve this issue, the Common Core State 

Standards were established with the goal of implementing a deeper and more rigorous 

curriculum in mathematics education, and the ways in which the concept of rigor has been 

designed and developed in these standards are among the main reasons why they have become so 

influential in our current education system. Thus, it seems particularly relevant to frame my 

curriculum analysis around the idea of rigor in mathematics education. 

As defined by the authors of the Common Core State Standards, rigor is the pursuit of 

conceptual understanding, procedural skill and fluency, and applications in mathematics with 

equal intensity.45  Conceptual understanding, while difficult to define since math education 

researchers have not yet come to an agreement on its definition, refers to students’ understanding 

of concepts and how they relate to each other.46  It can be demonstrated by classroom discussions 

about the mathematical reasoning behind an answer to a particular math problem, simple 

computational problems that link the solution to a conceptual question, making connections 

between functions and graphs, generating examples of a concept, using key vocabulary words in 

problems, and assigning problems that construct a variety of quantitative relationships.  In my 

analysis of the direct instruction and inquiry-based learning curricula, the curricula are evaluated 

on how well they develop conceptual understanding in their lessons on trigonometric functions.  

My analysis examines what aspects of each curriculum are concentrated on developing students’ 

conceptual understanding and what aspects of each curriculum seem to be lacking in this area. 

In order to construct a framework for how the different elements of each curriculum are 

or are not developing students’ conceptual understanding in my analysis, I utilized the level of 

cognitive demands scale in mathematics classrooms that Margaret Schwan Smith and Mary Kay 

Stein developed in Selecting and Creating Mathematics Tasks: From Research to Practice.  

Smith and Stein referred to lower-level demands as memorization and procedures without 

connections.47  Lower-level demands do not require students to cognitively engage with the 

mathematical concepts that are being taught in the lesson.  The tasks that are attributed as having 

lower-level demands often involve simply using memorization or following a procedure that was 

shown in class to produce the correct answer.  Smith and Stein defined higher-level demands as 

procedures with connections and doing mathematics.48  Essentially, higher-level demands lead to 

 
43 High School Publishers’ Criteria for the Common Core State Standards for Mathematics (p. 2). 
44 Ibid. 
45 Ibid. (p. 3). 
46 Ibid. (p. 9). 
47 Smith, Margaret Schwan, and Mary Kay Stein (1998). “Selecting and Creating Mathematics Tasks: From Research 
to Practice.” Mathematics Teaching in the Middle School (p. 348). Pittsburgh: National Council of Teachers of 
Mathematics. 
48 Ibid. 
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the development of students’ conceptual understanding by requiring students to develop their 

own procedure for how to solve mathematical problems and by requiring them to make 

connections between key mathematical relationships.  This scale on the level of cognitive 

demands in mathematics classrooms is used in my curricula analysis to establish a clear 

framework for how each curriculum develops students’ conceptual understanding of 

trigonometric functions. 

The second expectation for rigor in mathematics education given by the Common Core 

State Standards is procedural skill and fluency.  The goal of procedural skill and fluency is to 

equip students with the strategies and practices necessary to make them fluent in mathematical 

skills.  Procedural fluency refers to a student’s “knowledge of procedures, knowledge of when 

and how to use them appropriately, and skill in performing them flexibly, accurately, and 

efficiently.”49  While developing students’ procedural skill and fluency allows them lots of 

practice with solving computational and procedural problems, it is also connected to the 

development of their conceptual understanding of how the procedures work algebraically.  Since 

these two components of rigor are so tightly interwoven, it may be difficult at times to tease apart 

when it is conceptual understanding and when it is procedural fluency.  In my curricula analysis, 

I evaluated how each curriculum incorporated procedural skill and fluency into their lessons on 

trigonometry by analyzing how each curriculum engaged students in working with problems 

involving trigonometric functions.  Furthermore, how each curriculum engages students in 

working with these problems can be categorized as procedures with connections or as procedures 

without connections, depending on how much explanation of the procedure is requested.  

Procedures with connections means that students must provide a rationale for how they solved a 

problem or develop their own procedure for solving a problem.  Procedures without connections 

means that students can simply follow a procedure that has been shown to them without the 

exploring the why behind how it works. 

The third expectation for rigor is engaging students in applications of mathematical 

concepts.  One way in which curricula incorporate applications into their lesson plans is by 

writing problems in a real-world context that are designed for students to work through in either 

a collaborative or an independent setting.  These problems typically involve making practical 

assumptions based on the context of the problem, developing a procedure to solve the problem, 

and making connections between mathematical concepts.  In my analysis, I assessed the 

connections that the direct instruction and inquiry-based learning curricula made between 

trigonometric functions and real-world applications. 

Conceptual understanding, procedural skill and fluency, and applications are seen in 

conjunction as well as in disjunction with each other in mathematics curricula.50  Some learning 

tasks just focus on developing and addressing one component of rigor while other learning tasks 

interweave two or more of the components.  The Common Core State Standards sets the 

expectation that all three of the components of rigor in mathematics education are presented with 

equal intensity.  While not every learning task or lesson may integrate these three components 

with equal intensity, every curriculum as a whole is expected to do so.  My analysis of the direct 

instruction and inquiry-based learning curricula will investigate how each curriculum balances 

the three components of rigor in relation to each other.  In summary, conceptual understanding, 

 
49 Kilpatrick, Jeremy, Jane Swafford, and Bradford Findell (2001). Adding It Up: Helping Children Learn Mathematics 
(p. 121). National Research Council, Mathematics Learning Study Committee, Center for Education, Division of 
Behavioral and Social Sciences and Education. Washington, DC: National Academy Press. 
50 High School Publishers’ Criteria for the Common Core State Standards for Mathematics (p. 10). 
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procedural skill and fluency, and applications are the three expectations for rigor in mathematics 

education, and they establish the framework for my analysis of the direct instruction and inquiry-

based learning curricula. 
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Findings 

 
I conducted an analysis of two direct instruction and two inquiry-based learning 

curricula. Curriculum A51 and Curriculum B52 are the direct instruction curricula and Curriculum 

C53 and Curriculum D54 are the inquiry-based learning curricula. 

In order to numerically assess how the three components of rigor are integrated into 

each curriculum, I classified every quiz and test question in the trigonometry unit of each text 

into one of the seven categories shown in Figure 1 (page 15).  The language that the assessment 

questions used was crucial in how I determined which category each question fell under.  

Questions that used verbs like solve, evaluate, and simplify were placed in the procedural skill 

and fluency category.  If the question also asked for a graph, required the student to know key 

vocabulary words (such as amplitude, terminal side of an angle, or unit circle), or asked the 

student to provide an explanation of their work, then the question was classified as conceptual 

understanding + procedural skill and fluency.  If the question asked students to solve a problem 

embedded in a real-world scenario, it was classified as conceptual understanding + procedural 

skill and fluency + applications because students had to use their conceptual knowledge to apply 

their procedural skills to a new situation.  Quiz and test questions were classified as conceptual 

understanding if they asked students to think critically, define a key term, or make connections 

between concepts without requiring any procedural work.  In Curriculum C, some questions 

were categorized as conceptual understanding + applications because they asked students to 

think critically and make connections between a key concept and a real-world scenario without 

asking for any procedural work.  None of the questions were classified as either applications or 

procedural skill and fluency + applications because all of the problems that contained a real-

world application also had conceptual understanding interwoven into the fabric of the problem. 

 In Curriculum B, every assessment question had a procedural skill and fluency focus to 

it, but only 42% of the questions contained an element of conceptual understanding and only 8% 

had a real-world application embedded in the problem.  In over 50% of the problems, procedural 

skill and fluency was the only component of rigor that was being evaluated.  The questions that 

assessed conceptual understanding alongside procedural skill and fluency expected students to 

know important vocabulary terms and to be able to graph trigonometric functions.  Curriculum A 

also had a significant emphasis on procedural skill and fluency over the other two components of 

rigor, for 99% of its problems had an element of procedural skill and fluency, while only 53% 

and 4% of the problems had an element of conceptual understanding and applications, 

respectively.  The most noticeable difference between the assessment compositions of the two 

direct instruction curricula is related to the findings for conceptual understanding + procedural 

skill and fluency.  Curriculum A pairs procedural skill and fluency with conceptual 

understanding in 48% of its assessment problems, while Curriculum B makes that same pairing 

in only 34% of its assessment problems.  In several test questions in Curriculum A, students were 

 
51 Benson, John, Sara Dodge, Walter Dodge, Charles Hamberg, George Milauskas, and Richard Rukin (1991). 
Teacher’s Edition Algebra 2 and Trigonometry (pp. 610-639). Illinois: McDougal, Littell & Company. 
52 Larson, Ron, Laurie Boswell, Timothy D. Kanold, and Lee Stiff (2012). Algebra 2 (pp. 610-677). Florida: Houghton 
Mifflin Harcourt Publishing Company. 
53 Hirsch, Christian R., James T. Fey, Eric W. Hart, Harold L. Schoen, and Ann E. Watkins (2008). Core-Plus 
Mathematics (Course 2): Contemporary Mathematics in Context (pp. 457-487). New York City: McGraw Hill. 
54 Cuoco, Al (2009). Algebra 2: Center for Mathematics Education Project (pp. 680-777). New Jersey: Pearson 
Education, Inc. 
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assessed on proving trigonometric identities, analyzing or manipulating a graph, and explaining 

their answer, all of which pair conceptual understanding with procedural skill and fluency.  In 

both of the direct instruction curricula, assessments are primarily composed of questions that 

evaluate procedural skill and fluency, and while real-world applications are present in the 

quizzes and tests, they are by no means a main focus. 

 One major similarity between Curricula A, B, and D is that they all prioritize procedural 

skill and fluency in their assessments.  Approximately 88% of Curriculum D’s assessment 

problems had procedural skill and fluency in them, and 33% of them were solely focused on 

procedural skill and fluency.  The majority of these problems were asking students to solve 

equations and simplify expressions involving trigonometric functions.  However, Curriculum D 

places a greater emphasis on conceptual understanding than either of the direct instruction 

curricula because 67% of its assessment questions draw on students’ conceptual understanding, 

while only 53% and 42% of the assessment questions in Curricula A and B, respectively, do the 

same. 

As we can see in Figure 1, Curriculum D’s assessment composition looks fairly similar 

to those of the direct instruction curricula, but Curriculum C’s assessment composition looks 

significantly different.  In particular, Curriculum C includes a real-world application of some sort 

in more than 61% of its assessment problems for the trigonometry unit, which is a much greater 

percentage than the other three curricula (4%, 8%, and 0% of assessment problems have a real-

world application in Curricula A, B, and D, respectively).  Curriculum D is on the other end of 

the spectrum for integrating real-world applications into its content, for it does not have any 

assessment questions that contain applications in its unit on trigonometry, which is even more 

extreme than the direct instruction curricula since they both had at least a few problems that tied 

in real-world applications.  Another significant way in which Curriculum C’s assessment 

questions differ from the direct instruction curricula is that it prioritizes measuring students’ 

conceptual understanding over their procedural skill and fluency.  All of its assessment problems 

have conceptual understanding interwoven into them, while only 61% contain a procedural skill 

and fluency component, which is significantly less than what we see in the other three curricula.  

All in all, the two direct instruction curricula have very similar assessment compositions; 

however, that is not the case when it comes to the inquiry-based learning curricula, for 

Curriculum C and Curriculum D illustrate two drastically different designs for using an inquiry-

based approach to teaching trigonometry. 
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Figure I. Assessment Composition 
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Direct Instruction Analysis 

 
I focused my analysis on how each direct instruction curriculum integrates conceptual 

understanding, procedural skill and fluency, and applications into its instruction on trigonometry.  

In particular, I analyzed where these three components of rigor, as defined by the Common Core 

State Standards, appear in the structure of each curriculum, and I analyzed how they are 

developed throughout each curriculum’s direct instruction approach to teaching. 

 

Curriculum A 

 The first direct instruction curriculum that I analyzed is titled Teacher’s Edition Algebra 

2 and Trigonometry.55  There are three main parts to each lesson in Curriculum A: the first part is 

an introduction to the mathematical topic that will be the focus of the lesson; the second part 

consists of sample problems and solutions; and the third part includes warm-up exercises in 

addition to a problem-set.  The introduction directly states and explains the mathematical content 

for the lesson in brief and concise sections that are then followed by a couple of examples to 

illustrate particular concepts.  Typically, these examples include a graph or diagram of the 

situation that is being described in the problem.  In this part of the curriculum’s structure, the 

lower-level cognitive demand of memorization is present because the text has the important 

concepts and definitions related to trigonometric functions written in boldface font, with the 

intent that students will come away from the lesson with these ideas rooted in their minds.  For 

example, students are expected to know the definitions of the six trigonometric functions [sin(θ), 

cos(θ), tan(θ), csc(θ), sec(θ) and cot(θ)], the Pythagorean identities, and how cos(θ) and sin(θ) 

relate to a point on the unit circle.56  The lower-level demand of memorizing these important 

concepts and definitions is serving as a foundation for continued learning in this lesson by 

requiring students to become familiar with these concepts and definitions so that procedures with 

connections can be introduced later on in the lesson.  Moreover, this lower-level demand of 

memorization, which establishes a foundation for the lesson, is furthered into higher-level 

cognitive demands through the procedural skill and fluency aspect of rigor.  In the second and 

third parts of its structure, this curriculum works through a plethora of sample problems and 

individual exercises that require students to become familiar with the key definitions and 

concepts related to trigonometric functions. 

One way in which Curriculum A incorporates conceptual understanding into its lesson 

plans on trigonometric functions is by asking students to connect what they have learned about in 

previous lessons to the new lesson topic.  In each of the lessons in this curriculum, there is a 

section on the side of the textbook that is titled “Communicating Mathematics.”  This section in 

the lesson on trigonometric functions asks students to write a short paragraph with diagrams that 

illustrate how the Pythagorean Theorem is used to construct the Pythagorean identities that they 

are supposed to memorize.57  Students learned about the Pythagorean Theorem previously in the 

textbook, and now they are being asked to connect it to what they are currently learning about 

trigonometric functions.  This connection between what students are supposed to memorize and 

the development of their conceptual understanding shows how the lower-level cognitive demand 

 
55 Benson, John, Sara Dodge, Walter Dodge, Charles Hamberg, George Milauskas, and Richard Rukin (1991). 
Teacher’s Edition Algebra 2 and Trigonometry (pp. 610-639). Illinois: McDougal, Littell & Company. 
56 Ibid. (pp. 610-612). 
57 Ibid. (p. 612). 
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of memorization can be transformed into a higher-level cognitive demand by requiring students 

to think about how two mathematical concepts are interrelated. 

Additionally, each lesson in this curriculum has a section on the side of the textbook 

that is titled “Cooperative Learning.”  In terms of rigor, this section is designed to further 

students’ conceptual understanding of key ideas that are needed to form a strong foundation for 

future knowledge in a particular content area.  There is also a section on the side of the textbook 

that alerts teachers to conceptual stumbling blocks their students may face in understanding 

important mathematical concepts.  In order to identify whether or not their students have any 

misconceptions about the content that has just been presented to them, the teachers have a short 

section titled “Checkpoint” on the side of their textbook immediately following the introduction 

of the mathematical content.  In the trigonometric functions section of this curriculum, the 

problems that are listed in the checkpoint section are solely focused on the conceptual 

understanding and the procedural skill and fluency aspects of rigor, and they do not contain any 

applications. 

Nonetheless, the three components of rigor are interwoven in a small proportion of the 

sample problems and solutions that make up the second part of Curriculum A’s structure.  For 

example, one of the sample problems uses the real-world application of constructing the roof of a 

house by asking students to find the angle that the roof makes with the horizontal.58  This 

problem requires students to use what they know about trigonometric functions to strategically 

develop a procedure that will lead them to the correct answer.  Since students have to develop 

their own procedure, this problem requires a higher-level cognitive demand.  Thus, conceptual 

understanding, procedural skill and fluency, and applications are all present in this sample 

problem. 

However, while there is one sample problem that includes an application, there are five 

other sample problems that do not contain references to any real-world applications, and in the 

lesson on trigonometric functions, only one out of forty problems contain a real-world 

application.  This disproportion is also seen in the warm-up exercises and problem-set that make 

up the third part of this curriculum’s structure.  Instead of interweaving all three of the 

components of rigor, these problems are primarily focused on the procedural skill and fluency 

aspect of rigor.  For example, the problems in this section are asking students to find values, 

expressions, and angle measures using trigonometric functions, which means that these problems 

are mainly focused on developing students’ procedural skill and fluency in trigonometry. 

Moreover, the text includes a list of problem-set notes and strategies for teachers to 

reference as their students work through the questions in the problem-set.  For example, one of 

the questions requires students to make a connection between the tangent function and the x-and-

y-values of a coordinate point.  The strategy note to the teacher warns that this connection may 

take some time for students to make, and that the students will need to identify how the 

Pythagorean Theorem relates to the question in order to find the answer.59  In this problem, 

students are required to use higher-level cognitive demands in order to make these connections.  

Therefore, conceptual understanding is being integrated alongside procedural skill and fluency in 

the problem-set for trigonometric functions. 

Throughout the three different parts of Curriculum A’s structure, the three components 

of rigor are seen in conjunction as well as in disjunction with each other.  However, it is apparent 

that conceptual understanding, procedural skill and fluency, and applications are not being 

 
58 Ibid. (p. 613). 
59 Ibid. (p. 623). 
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integrated with equal intensity into this direct instruction curriculum.  Ultimately, we can 

conclude for the trigonometry unit of the text that while rigor is integrated into Curriculum A, it 

is not yet meeting the expectations of the Common Core State Standards for rigor in regards to 

its disproportionately greater focus on procedural skill and fluency and how it relates to 

conceptual understanding than on real-world applications. 

 

Curriculum B 

The second direct instruction curriculum that I analyzed is titled Algebra 2 and it has 

two chapters in its unit on trigonometry.60  The first chapter is titled “Trigonometric Ratios and 

Functions” and the second chapter is titled “Trigonometric Graphs, Identities, and Equations.”61  

Each chapter begins with a section on prerequisite skills that contains a brief problem set on 

previously learned material.  This section checks students’ understanding of key vocabulary 

terms and algebraic skills that they will need to be able to utlize in the new chapter.  At the start 

of every chapter as well as at the start of every lesson, Curriculum B introduces a new topic in a 

“Before, Now, and Why” format by connecting it to what students had been learning before, 

what students will be learning now, and why they will be learning it.  The text seeks to make 

connections for students by introducing what they will now be learning in the context of what 

they have learned previously.  By explicitly making this connection for students, Curriculum B 

helps to further students’ conceptual understanding of how different topics in mathematics are 

related, which helps students to see everything that they are learning as interwoven and 

interconnected instead of as discrete and disconnected.  However, since the text is making the 

connections for the students instead of leading the students to make the connections for 

themselves, it could lessen the depth and impression that these connections make on the 

students’ understanding and insight. 

Furthermore, the “Before, Now and Why” section answers the commonly heard refrain 

in mathematics classrooms of “why are we learning this?”  Answering this question not only 

provides students with a better understanding of how a seemingly abstract concept can actually 

be useful, but it also orients the students in the direction that the lesson will be taking them.  

Curriculum B employs the “Why” strategy in its introduction to trigonometry by explaining that 

trigonometry can be used to “find lengths and areas in real life.”62  The real life example that the 

text illustrates is finding the area of a step on a spiral staircase.  As mentioned in the section on 

methodology, the three components of rigor are often seen in conjunction with each other, and 

the “Before, Now, and Why” section of Curriculum B is a great example of that relationship.  

The “Before” section connects previously learned procedures and skills to what students will be 

learning in the new lesson or chapter, which guides them in understanding how different 

concepts are related, and this understanding requires a higher-level cognitive demand from 

students.  The “Why” section ties in applications to conceptual understanding by framing the 

concepts that students will be learning in a way that highlights how these concepts can be useful 

in real life. 

The lessons in Curriculum B are written in the following pattern: a key concept is 

introduced, one or two examples are given for that key concept, a guided practice section with 

problems similar to the examples comes next; then, another key concept is introduced and the 

 
60 Larson, Ron, Laurie Boswell, Timothy D. Kanold, and Lee Stiff (2012). Algebra 2 (pp. 610-677). Florida: Houghton 
Mifflin Harcourt Publishing Company. 
61 Ibid. (p. xvi-xvii). 
62 Ibid. (p. 555). 
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pattern continues.  All of the key concepts are directly explained and no investigative work is 

required of the students.  These concepts are presented in a way that focuses on equipping 

students with the tools needed to do the problems and exercises in that section; thus, its focus is 

much more on procedural skill and fluency than on developing students’ conceptual 

understanding.  For example, when the text introduces students to evaluating trigonometric 

functions, it outlines a procedure with three steps that students can use whenever they are solving 

for an angle θ.63  Even though the procedure is Curriculum B’s main focus when it comes to the 

key concept, the curriculum also includes a diagram, which is placed to one side in the text, of 

the signs for sin(θ), cos(θ), tan(θ) in the four quadrants of a graph.  This diagram serves to 

further develop students’ conceptual understanding when it comes to evaluating trigonometric 

functions, but it should be noted that students could simply memorize (lower-level cognitive 

demand) the diagram without really having to investigate how the signs of the trigonometric 

functions are related to the quadrants of a graph.  We could even go so far as to say that the text 

really isn’t developing students’ conceptual understanding at all since it doesn’t explain why the 

trigonometric functions are positive or negative in each quadrant. 

Following each lesson is an exercises section that contains approximately thirty to fifty 

problems.  The exercises are split into two parts: skills practice and problem solving.  The skills 

practice section is primarily based on procedural skill and fluency, but as we mentioned in the 

methodology section of this paper, procedural skill and fluency and conceptual understanding 

can be difficult to tease apart at times because conceptual understanding plays an important role 

in whether students understand how to approach and procedurally solve skills-based exercises.  

Meanwhile, the problem-solving exercises have all three components of rigor interwoven into 

every problem.  In this section, every exercise contains a real-world scenario (applications), asks 

students to solve for a numerical value (procedural skill and fluency), and requires them to orient 

their answer in the context of the real-world scenario and explain their reasoning (conceptual 

understanding). 

One notable feature of Curriculum B is a section titled “Problem Solving Workshop” 

that follows immediately after one of the lessons in every chapter.  This section builds off a 

particular problem-solving method that students were taught in an example from the lesson by 

listing alternative methods for solving that same example.  Understanding that there are multiple 

methods that can be used to solve the same problem is a very important part of a student’s 

mathematical development, particularly in regard to procedural fluency.  However, students are 

still not being challenged to find alternative methods on their own because the text is continuing 

to show them the different methods that can be used, so students are merely mimicking the 

methods as they work through the practice problems.  While students would hopefully use a 

higher-level of cognitive reasoning when engaging with alternative methods for solving the same 

problem by trying to understand why these different methods will ultimately lead to the same 

answer, students could just follow the alternative methods that are shown without wrestling with 

the “why” behind each of them.  However, if students could potentially follow the procedures 

without really having any knowledge of when or why it is appropriate to use them, should this 

problem-solving section of the curriculum even be categorized as procedural fluency? 

 There are two distinct features in each chapter of Curriculum B that deviate from what 

we would typically expect to see in a direct instruction curriculum.  The first is a section titled 

“Mixed Review of Problem Solving” and it is present in every chapter and comprised of several 

multi-step problems that contain a real-world scenario.  This section looks very similar to the 

 
63 Ibid. (p. 572). 
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kinds of problem-sets that we see in inquiry-based learning curricula.  The second nontraditional 

feature that I found in each chapter in Curriculum B is an inquiry-based activity that has students 

explore a particular key concept.  For example, in the first chapter on trigonometry, this inquiry-

based activity has students explore the law of sines by drawing a triangle, measuring the angles 

and side lengths, calculating the ratios 
sin 𝐴

𝑎
, 

sin 𝐵

𝑏
, and 

sin 𝐶

𝑐
, and drawing conclusions about their 

observations.  This activity requires students to engage at a higher cognitive level with the 

mathematical content by making connections between what they were seeing with the ratios and 

what they had just learned about the law of sines.  One feature that is important to note about this 

explorative activity is that it comes after a lesson on the law of sines, which means that students 

have already been explicitly taught that this law exists, so they are not actually discovering it for 

themselves.  In a typical inquiry-based learning curriculum, we would expect students to do an 

activity similar to this one before being told about the law of sines. 

 Real-world applications are present in Curriculum B, but they are not a foundational 

part of the text.  They are typically found in one example in each lesson, the problem-solving 

section of the post-lesson exercises, and the “Mixed Review of Problem Solving” section in each 

chapter.  They are not present in the chapter summaries for the trigonometry unit, nor are they a 

focus in the chapter quizzes and tests.  The main emphasis in Curriculum B is on procedural skill 

and fluency because its development is the main theme of the key concepts, examples, guided 

practice, exercises, and assessments.  While conceptual understanding is often tied into the 

procedural skill and fluency components of this curriculum, how the text is actually measuring 

students’ conceptual understanding is unclear because students could use lower-level cognitive 

thinking to memorize concepts and mimic procedures in place of higher-level cognitive thinking, 

which would require them to pursue a deeper understanding of how trigonometric concepts and 

procedures are connected.  For the trigonometry unit of Curriculum B, we can conclude that 

while the three components of rigor are integrated into the text, it is not yet meeting the 

expectations of the Common Core State Standards because of its disproportionately greater focus 

on procedural skill and fluency, its limited connections to real-world applications, and its lack of 

a measurable outcome when it comes to evaluating students’ conceptual understanding. 
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Inquiry-Based Learning Analysis 

 
As with the direct instruction curricula, I focused my analysis on how each inquiry-

based learning curriculum integrates conceptual understanding, procedural skill and fluency, and 

applications into its instruction on trigonometry.  In particular, I analyzed where these three 

components of rigor, as defined by the Common Core State Standards, appear in the structure of 

each curriculum, and I analyzed how they are developed throughout each curriculum’s inquiry-

based approach to teaching. 

 

Curriculum C 

 The first inquiry-based learning curriculum that I analyzed is titled Core-Plus 

Mathematics (Course 2): Contemporary Mathematics in Context.64  The trigonometric functions 

unit of Curriculum C is structured into three sections that are referred to as investigations by the 

text.  These three investigations all follow identical formats, and they make up almost the 

entirety of the lesson on trigonometric functions.  The rest of the lesson consists of a brief 

introduction to trigonometric functions in a real-world context and it ends with an independent 

practice section. 

 The lesson on trigonometric functions in this inquiry-based learning curriculum begins 

with a section titled “Think About This Situation.”  This section brings in a real-world contextual 

problem that illustrates the applicability of the particular mathematical concept that is being 

explored in each lesson.  For example, this curriculum uses a jack mechanism to show students 

how the measures of the sides and angles of a triangle are interconnected.65  This section of the 

lesson asks the students to think about how the measures of the sides and angles of the triangle 

change in relation to each other as the rod of the jack mechanism is turned.  In this introduction 

to the lesson, the text has students connect what they learned about triangles as rigid figures in a 

previous lesson to what they are going to learn about triangles in regards to trigonometric 

functions.  This section requires a higher-level cognitive demand from students, but it does not 

require them to perform any mathematical calculations.  Thus, this section of the inquiry-based 

learning curriculum includes a conjunction of conceptual understanding and applications, but it 

excludes the procedural skill and fluency component of rigor. 

 The first part of the investigations in this curriculum poses a couple of questions for 

students to focus on answering as they work through the problems and real-world scenarios that 

are given in the next part of the investigation.  For example, the second investigation in this 

lesson is titled “Measuring Without Measuring,” and it focuses the students’ attention on the 

question of how trigonometric functions can be used to calculate distances that cannot be 

measured precisely.66  The text does not directly provide the students with the information that 

they need to answer this question.  Instead, the text instructs students to use what they learned 

about trigonometric functions in the previous investigation to answer this question.  Essentially, 

this curriculum is guiding students on how to conceptually think about mathematical theories, 

but it is not instructing them on how to procedurally apply these concepts to make calculations. 

 
64 Hirsch, Christian R., James T. Fey, Eric W. Hart, Harold L. Schoen, and Ann E. Watkins (2008). Core-Plus 
Mathematics (Course 2): Contemporary Mathematics in Context (pp. 457-487). New York City: McGraw Hill. 
65 Ibid. (p. 458). 
66 Ibid. (p. 467). 
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 The second part of the investigations in this curriculum consists of integrating the three 

components of rigor into multi-step problems that build off of the questions that are posed in the 

first part of the investigations.  The first part of each of these problems typically involves 

performing a simple mathematical calculation using trigonometric functions.  In order for 

students to be able to make these simple computations, they need to have a conceptual 

understanding of how to use trigonometric functions, and they need the procedural skills to be 

able to correctly perform the actual computation.  The mathematical concepts that students need 

to memorize are written in boldface font in this section of the investigation.  However, since this 

inquiry-based learning curriculum does not directly teach students the procedures for how to use 

trigonometric functions in making mathematical calculations, students must do more than simply 

memorize the trigonometric functions because they are being required by the text to develop 

their own procedure for how to apply what they know about trigonometric functions to finding 

side and angle measures of triangles.  Having students develop their own procedures is an 

important aspect of procedural skill and fluency since it is requiring students to use methods that 

make sense to them, even if they are not necessarily using the standard method.  Thus, this 

curriculum requires students to employ a higher-level cognitive demand when they are solving 

these investigative problems. 

 In the second section of each investigation, the other parts of these problems are 

focused on a variety of real-world applications involving scenarios in which triangular diagrams 

can be constructed.  For example, the height of a real-world structure is compared to the height 

of a person in one of the problems, and the problem asks students to determine some of the 

lengths and angles between the person and the structure using trigonometric functions.67  Hence, 

these investigative problems consist of an integration of all three of the components of rigor. 

Furthermore, the third part of the investigations in this curriculum includes a section 

titled “Summarize the Mathematics.”  Distinct from the previous aspects of these investigations, 

this section does not include applications, and it is primarily focused on developing students’ 

conceptual understanding.  In the third investigation on trigonometric functions, this section asks 

students how they could find particular side and angle measurements of a triangle based on what 

pieces of information are given to them.68  However, this section does not ask students to 

actually calculate those measurements, which reveals a certain lack of intensity in this 

curriculum in regards to the procedural skill and fluency component of rigor.  While asking 

students to think about how they could build their own procedures for finding angle measures 

and side lengths certainly relates to their development of procedural skill and fluency, the 

absence in this curriculum of having students actually make those mathematical calculations 

using an efficient method is undeniably concerning. 

 The final part of the investigations in this curriculum is titled “Check Your 

Understanding” and it smoothly integrates all three components of rigor into one real-world 

contextual problem that involves developing and following a procedure to determine distances 

and angle measures.  Following the three investigations in the lesson on trigonometric functions 

in this curriculum, there is a section titled “On Your Own” that includes problems specifically 

for applications, connections, reflections, extensions, and review.  The three components of rigor 

are presented with varying levels of intensity in these different sets of problems.  For example, 

the review problems are connected to the procedural skill and fluency component of rigor, the 

 
67 Ibid. (p. 468). 
68 Ibid. (p. 473). 
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reflection problems are connected to the conceptual understanding component of rigor, and the 

extension problems are an integration of all three of the components of rigor. 

In conclusion, the three components of rigor are all present throughout the structure of 

this inquiry-based learning curriculum, but they are not all presented with equal intensity.  The 

Common Core State Standards set the expectation for rigor as the pursuit, with equal intensity, of 

conceptual understanding, procedural skill and fluency, and applications.  There is a stronger 

emphasis on conceptual understanding and how it relates to real-world applications than on 

procedural skill and fluency.  Since this inquiry-based method of teaching does not include direct 

instruction on mathematical procedures involving trigonometric functions, students are guided 

by the text into developing their own procedures.  This method of teaching results in a greater 

focus on conceptually developing mathematical procedures instead of practicing them in order to 

gain procedural fluency.  In essence, we can conclude for the trigonometry unit of the text that 

while rigor is interwoven into this inquiry-based learning curriculum, it is not yet meeting the 

expectations of the Common Core State Standards for rigor in regards to its disproportionately 

greater concentration on conceptual understanding and how it relates to real-world applications 

than on procedural skill and fluency. 

 

Curriculum D 

 The second inquiry-based learning curriculum that I analyzed is titled Algebra 2: Center 

for Mathematics Education Project.69  Curriculum D’s final chapter is an introduction to 

trigonometry.  It begins with a “Chapter Opener” that seeks to activate students’ prior knowledge 

by reviewing key ideas on right triangles, namely, similarity and the AA Theorem.  Then, the 

text connects these concepts to the sine, cosine, and tangent ratios in right triangles by directly 

stating them as definitions, which is a different approach than what we saw in our analysis of the 

other inquiry-based learning curriculum.  In Curriculum C, students discovered the trigonometric 

ratios for themselves through a series of investigative problems working with right triangles and 

side ratios before the text provided them with definitions of sine, cosine, and tangent.  However, 

in Curriculum D, the text immediately gives definitions for the trigonometric functions and then 

has students do investigative work using those functions as their primary tools. 

 Curriculum D’s chapter on trigonometry is divided into three investigations: 

Trigonometric Functions, Graphs of Trigonometric Functions, and Applications to Triangles.  

Each investigation is divided into three to five important subtopics that relate to the main topic.  

Curriculum D begins each investigation by telling students what they will be able to do by the 

end of the investigation, and it has this section broken down into three main categories of 

sentence stems that, interestingly enough, correspond with the three components of rigor.  The 

first sentence stem is “You will be able to answer questions like these…” and it is set up to 

measure students’ conceptual understanding by posing questions like “How can you extend the 

definitions of sine, cosine, and tangent to any angle, not just acute angles?” and “What is the 

relationship between the equation of the unit circle and the Pythagorean Identity?”70  The second 

sentence stem is “You will learn how to…” and it ties in specific procedural skills that students 

will acquire throughout the investigation, including the skills to “evaluate the sine, cosine, and 

tangent functions for any angle” and “solve equations involving trigonometric functions.”71  The 

 
69 Cuoco, Al (2009). Algebra 2: Center for Mathematics Education Project (pp. 680-777). New Jersey: Pearson 
Education, Inc. 
70 Ibid. (p. 688). 
71 Ibid. 
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third sentence stem is “You will develop these habits and skills…” and it lists mathematical 

problem-solving and thinking skills that will be of significant value to students when they need 

to apply their learning to real-world situations both inside and outside the classroom.  Students 

will be able to “extend the sine, cosine, and tangent functions carefully, in order to preserve key 

properties” and “use logical reasoning to find all possible solutions of a trigonometric 

equation.”72 

 After using the three types of sentence stems to orient students on what they will be 

learning, each investigation has a section titled “For You to Explore” that is intended to activate 

students’ prior knowledge and connect it to new ideas.  The problems and questions that this 

exploratory section contains are heavily geared toward developing students’ conceptual 

understanding because they ask students to explain what they are seeing and discovering in the 

guided exploration.  We also mainly see conceptual understanding (with some procedural skill 

and fluency tied in) embedded in the two sections titled “Exercises: Practicing Habits of Mind” 

and “Developing Habits of Mind,” which are a part of every lesson in the trigonometry 

investigations.  The “Developing Habits of Mind” section develops students’ critical thinking 

skills by guiding them in questioning mathematical definitions (e.g. tan θ =
sin θ

cos θ
 is only valid for 

0 ≤ θ < 90)73 and identifying key relationships between concepts (e.g. the Pythagorean 

Theorem and the trigonometric identity sin θ2 + cos θ2 = 1).74 

 While the “Exercises: Practicing Habits of Mind” and “Developing Habits of Mind” 

sections appear in every trigonometry lesson in Curriculum D, the other components of each 

lesson tend to vary a bit, which is different from the consistent structure in every lesson that we 

have seen in the previous three curricula.  Each lesson is composed of a different variation of the 

following elements: definitions, examples, theorems, discussion questions, and practice 

problems.  As with the other aspects of the text, conceptual understanding is strongly emphasized 

and paired with some procedural skill and fluency. 

The assessments in Curriculum D include a mid-chapter test after the second 

investigation and a chapter test after the third investigation.  As you saw depicted in the findings 

section of this paper, the assessment composition for Curriculum D is very similar to that of the 

direct instruction curricula because it incorporates a great deal of procedural skill and fluency in 

the quizzes and tests for the trigonometry unit.  However, this focus on procedural skill and 

fluency that we see in Curriculum D’s assessments does not necessarily align with the focus of 

its investigations in the trigonometry unit.  In its investigations, we see that developing students’ 

conceptual understanding is by far the main priority and goal of the text, so procedural skill and 

fluency plays a much smaller and more complementary role as it is interwoven with the 

conceptual understanding.  The problems that are presented in the investigations ask students 

questions like: Can you think of a situation in which it would be better to use one method over 

another when solving for an angle measure, can you describe how the y-coordinate changes as 

the angle increases on the unit circle, and can you explain why the circle will pass through a 

specific point on the coordinate plane?75  In Curriculum D’s trigonometry assessments, over 50% 

of the questions are categorized as conceptual understanding + procedural skill and fluency, but 

their roles from the investigations are switched because conceptual understanding is now 

 
72 Ibid. 
73 Ibid. (p. 695). 
74 Ibid. (p. 685). 
75 Ibid. (pp. 684-689). 
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complementing procedural skill and fluency instead of vice versa as in the investigations.  The 

problems that are presented in the assessments ask students to determine which quadrant an 

angle θ would be in given certain conditions, simplify trigonometric expressions, sketch angles 

in standard position, and use the sketch to find sin(θ), cos(θ), and tan(θ).76 

Where do we see real-world applications in Curriculum D?  We see brief references and 

connections to real-world applications throughout the text, but we do not see students actually 

having to engage with these connections between trigonometric concepts and the real-world.  In 

the trigonometry unit for Curriculum D, neither the lesson exercises nor the chapter assessments 

have problems with real-world applications.  However, real-world applications are referenced in 

the two paragraphs at the very beginning of the unit that introduce students to the study of 

trigonometry.  The text explains that trigonometry is not only about triangles, but it is also about 

waves and oscillations.  The text gives examples of where we see waves in the natural systems of 

our world, including the movement of light, sound, and molecules in a solid.77  The curriculum 

then uses this information to make connections between trigonometry and different sciences, 

such as acoustics, optics, chemistry, and electrical engineering.  By making these connections, 

the text is helping students to understand the real-world relevance of the seemingly abstract 

concepts that they will be learning about in the unit.  Curriculum D begins the unit by providing 

a real-world frame of reference for the concepts that students will be learning about throughout 

the investigations; however, it is surprising that the curriculum does not include exercises that 

incorporate these real-world connections to further students’ understanding of how to apply what 

they’ve learned in different settings. 

What we do see throughout the unit on trigonometry are brief side-notes that reference 

real-world connections to the different concepts that are being presented.  For example, when 

learning about what it means for the tangent function to be periodic, Curriculum D has a picture 

at the bottom of the page of a busy street with traffic lights and a description that reads, “The 

periods of the traffic lights are set to manage the flow of traffic.”78  The real-world reference to 

traffic lights helps students to conceptualize where they might see periodic functions come up 

outside of the classroom.  Another real-world reference that the curriculum makes is to 

approximating the measure of physical landmarks that cannot be measured precisely, such as 

finding the width of a glacier.  The text tells students that they can use triangle relationships to 

approximate the measurements of a glacier.79  However, the text doesn’t have students actually 

apply their knowledge of triangle relationships to measure the width of a glacier, which 

demonstrates a lack of procedural skill and fluency development in the text.  By making brief 

connection to real-world applications of key trigonometric concepts throughout the chapter, 

Curriculum D is furthering students’ conceptual understanding of how trigonometry can be used 

and applied in the world.  While students will now have a better conceptual understanding of 

how trigonometry is used in the real world, they will not have any experience with using 

trigonometry to develop procedures to solve problems embedded in a real-life scenario. 

Throughout the trigonometry investigations in Curriculum D, we have seen that 

developing students’ conceptual understanding is the main focus of the text.  While there is a 

good amount of procedural skill and fluency interwoven with this conceptual understanding, 

there is a very apparent and serious lack of real-world applications in the curriculum, which leads 

 
76 Ibid. (p. 775). 
77 Ibid. (p. 681). 
78 Ibid. (p. 724). 
79 Ibid. (p. 736). 
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us to conclude, as with the other three curricula, that Curriculum D’s unit on trigonometry is not 

meeting the expectations of the Common Core State Standards for rigor since conceptual 

understanding, procedural skill and fluency, and applications are not being integrated with equal 

intensity in the mathematical content. 
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Conclusion: Where Do We Go From Here? 

 
The central focus of my analysis was investigating how direct instruction and inquiry-

based learning curricula integrate rigor into their divergent approaches to presenting content to 

high school mathematics students, based on the expectations of the Common Core State 

Standards.  As we have discovered so far, direct instruction and inquiry-based learning curricula 

use methods that are seemingly similar as well as distinctly different to integrate rigor into their 

respective units on trigonometry.  However, none of the four curricula that I analyzed for this 

project actually meet the expectations for rigor set by the Common Core State Standards because 

none of them pursue conceptual understanding, procedural skill and fluency, and applications 

with equal intensity.80  The direct instruction curricula focus more on procedural skill and 

fluency while the inquiry-based learning curricula focus more on conceptual understanding.  

Curriculum C integrates real-world applications throughout its investigations and exercises, but 

the other three curricula only integrate a minimal amount of application problems. 

Clearly, each curriculum has its own strengths, weaknesses, and challenges, but where 

does that leave us?  More specifically, where do mathematics educators go from here?  As you 

will see in the next section, mathematics educators can synthesize the different components of 

direct instruction and inquiry-based learning curricula into a sequence of lesson plans that 

utilizes the assets of both teaching styles in order to effectively present new content to students in 

an active and structured learning environment.  While combining the strengths of two divergent 

approaches to teaching requires time, intentionality, and access to both types of curricula, it is a 

practical and impactful step that we as educators can take in order to more effectively 

differentiate our instruction with the goal of making the mathematical content more accessible to 

our students. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
80 High School Publishers’ Criteria for the Common Core State Standards for Mathematics (p. 3). 
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Synthesized Lesson Plan 

 

Lesson  

Day 1 

 

Activity description/Teacher does 

 

Students do 

Title Inquiry-Based Learning on the Connection between 

Similarity and Side Ratios in Right Triangles 

 

Standard CCSS.MATH.CONTENT.HSG.SRT.C.6 

 

Understand that by similarity, side ratios in right triangles are properties of the angles in the 

triangle, leading to definitions of trigonometric ratios for acute angles.81 

Central 

Focus (CF) 

Students will construct their knowledge of the connection between similarity and side ratios 

in right triangles as properties of the angles in the triangle in order to solve problems 

involving right triangles using trigonometric functions. 

Academic 

Language 

Opposite, adjacent, and hypotenuse side lengths in right triangles, similarity, AA criterion 

for similarity, corresponding angles, acute angles, ratios, sine, cosine, and tangent. 

 

Understand and make connections between similarity and side ratios in right triangles. 

Learning 

Target 

(LT) 

Students will understand that, by similarity, side ratios in right triangles are properties of the 

angles in the triangle. 

Instruction 

(e.g. inquiry, 

preview, 

review, etc.) 

Teacher reviews prerequisite knowledge with students by 

giving them the following entry task: 

• The teacher draws three pairs of triangles on the 

whiteboard. One pair is congruent (and thus similar), 

one pair is similar, and one pair is not similar. 

• The teacher asks the students to individually 

determine whether each pair is or is not similar. 

• The teacher has students share their answer with a 

partner. 

o Teacher listens to the students as they pair-

share during the entry task. Teacher listens 

for student understanding of what it means 

for two triangles to be similar. 

• The teacher randomly calls on students to share and 

justify their answer to the entry task. 

Students complete the entry 

task individually. 

 

 

 

 

 

Students pair-share with a 

peer. 

 

 

 

 

Students participate in the 

whole class discussion of the 

entry task. 

 
81 National Governors Association Center for Best Practices, and Council of Chief State School Officers (2010). 
Common Core State Standards for High School Mathematics (p. 77). Washington D.C.: National Governors 
Association Center for Best Practices and Council of Chief State School Officers. 
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o The teacher asks if the class agrees with the 

answers given. Why or why not? 

o What does it mean for two triangles to be 

similar? 

 

Teacher introduces the learning target for the lesson. 

 

Teacher introduces the Inquiry-Based Learning Lab and 

reviews the expectations for group work with the class. 

• Include everyone in the group work. 

• Ask questions. 

• Stay engaged in the group work. 

 

 

Teacher introduces the names for the sides of right triangles 

from a specific reference angle by drawing a right triangle 

on the whiteboard, identifying a reference angle, and 

labeling the sides as Opposite, Adjacent, and Hypotenuse. 

 

 

 

Students write down the 

learning target. 

 

Students listen to the lab 

instructions and participate in 

reviewing the expectations for 

group work. 

 

 

 

Students listen as the teacher 

explains the Opposite, 

Adjacent, and Hypotenuse 

math convention. 

Practice 

Activity 

 or 

Support 

Teacher assigns students to mixed ability groups of four and 

gives every student a ruler, a protractor, and the inquiry-

based learning lab handout.82 

 

Teacher gives each group four similar right triangles, but 

every group’s right triangles have two different angle 

measures (e.g. 30-60-90, 45-45-90, 10-80-90, 17-73-90, 26-

64-90, 32-58-90). Teacher does not tell the students that 

their group’s triangles are similar. 

 

Teacher walks around to each group and monitors their 

progress toward the learning target. 

 

Teacher will listen for: 

• Students using the academic language correctly. 

• Students making correct observations about the 

connection between similarity and side ratios in right 

triangles as properties of the angles in the triangle. 

• Students answering the questions on the lab 

correctly. 

• All students having a voice in their group discussion. 

 

Answers: 

1) All of the triangles have the same angle measures. 

Inquiry-Based Learning Lab 

 

Students will work in mixed 

ability groups of four to 

construct their knowledge of 

the connection between 

similarity and side ratios in 

right triangles as properties of 

the angles in the triangle. 

 

Every student in each group 

selects one of the four similar 

right triangles that were given 

to their group and uses their 

protractor to measure the two 

unknown angle measures. 

 

 

 

 

 

 

Students answer the following 

questions: 

 
82 HCPSS Secondary Mathematics Office (v2.1); adapted from: Leinwand, S. (2009). Accessible mathematics: 10 
instructional shifts that raise student achievement. Portsmouth, NH: Heinemann. 
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2) All of the triangles are similar. 

3) 180° 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Answer: 

1) If we multiply each of the side lengths of one 

triangle by the same constant number, then we get 

the side lengths of a similar triangle. 

 

 

 

 

 

 

 

 

 

Answers: 

1) Opposite/Hypotenuse; Adjacent/Hypotenuse; 

Opposite/Adjacent; Hypotenuse/Opposite; 

Hypotenuse/Adjacent; Adjacent/Opposite. 

2) The opposite side length would be the same as the 

hypotenuse. 

 

 

 

 

 

 

 

Answers: 

1) What do you notice 

about the angle 

measures for all of the 

triangles in your 

group? 

2) What conclusion can 

you draw from this 

and why? 

3) What is the sum of the 

angle measures for 

each triangle in your 

group? 

 

Every student measures the 3 

side lengths of their triangle, 

and then compares the side 

lengths of their triangle with 

the side lengths of their group 

members’ triangles. 

1) What observations can 

you make about the 

side lengths of similar 

triangles? 

 

Choose one corresponding 

angle in your group’s 

triangles (not the right angle) 

as the reference angle and 

construct ratios for each 

triangle using the opposite, 

adjacent, and hypotenuse side 

lengths. 

1) What ratios do you get 

for each triangle? 

2) Why can’t you choose 

the 90° angle to be the 

reference angle? 

 

Use the other corresponding 

angle in your group’s 

triangles as the reference 

angle and construct ratios for 

each triangle using the 

opposite, adjacent, and 

hypotenuse side lengths. 
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1) Opposite side for the first reference angle equals the 

adjacent side for the second reference angle. 

Adjacent side for the first reference angle equals the 

opposite side for the second reference angle. 

Hypotenuse for the first reference angle equals the 

hypotenuse for the second reference angle. 

2) By similarity, side ratios in right triangles are 

properties of the angles in the triangle. 

1) How do these results 

compare to the ratios 

you got using the other 

angle as the reference 

angle? 

2) What can you 

conclude about 

similarity and side 

ratios in right 

triangles? 

Informal 

Assessment 

Teacher evaluates the students’ progress toward the learning 

target by observing their small group work on the Inquiry-

Based Learning Lab. 

 

Teacher debriefs the Inquiry-Based Learning Lab with the 

whole class. 

• Teacher asks all of the groups to share the angle 

measures of their group’s similar triangles and their 

findings from the lab with the class. 

o What is similar about the findings for all of 

the groups? 

o What can you conclude about similarity and 

side ratios in all right triangles? 

o Teacher measures the students’ progress 

toward the learning target by their responses. 

o Teacher directly explains that by similarity, 

side ratios in right triangles are properties of 

the angles in the triangle. 

• Teacher presents the students with the following 

trigonometric ratios:83 

 

 

Students work in small groups 

to complete the Inquiry-Based 

Learning Lab. 

 

 

 

Students share their group’s 

findings with the class and 

listen to other groups’ 

findings. 

 

 

 

 

 

 

 

 

Students copy the 

trigonometric ratios down in 

their math notebooks. 

 

 

 

 

 

 

 

 

 

 

 

 

 
83 Core-Plus Mathematics (Course 2): Contemporary Mathematics in Context (p. 468). 
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• Teacher explains that they will learn more about 

these trigonometric ratios and why they are 

important in the next four lessons. Teacher tells the 

students that these ratios should be memorized. 

 

 

Closure 

Assessment 

of Student 

Voice 

Exit Ticket: Problem 2a from the Inquiry-Based Learning 

Curriculum:84 

 

Students complete the exit 

ticket. 

Homework 

Problem 2b from the Inquiry-Based Learning Curriculum.85 

 

Students complete the 

homework and begin 

memorizing the trigonometric 

ratios. 

 

 

 

 

 
 

 
84 Ibid. 
85 Ibid. 
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Lesson 

Day 2 

 

Activity description/Teacher does 

 

Students do 

Title Using Trigonometric Functions to Solve Problems involving 

Right Triangles 

 

Standard CCSS.MATH.CONTENT.HSG.SRT.C.6 

 

Understand that by similarity, side ratios in right triangles are properties of the angles in the 

triangle, leading to definitions of trigonometric ratios for acute angles.86 

Central 

Focus (CF) 

Students will construct their knowledge of the connection between similarity and side ratios 

in right triangles as properties of the angles in the triangle in order to solve problems 

involving right triangles using trigonometric functions. 

Academic 

Language 

Trigonometric functions, inverse trigonometric functions, sine, cosine, tangent, opposite, 

adjacent, hypotenuse, right triangles. 

 

Use trigonometric functions to solve problems involving right triangles. 

Learning 

Target 

(LT) 

Students will solve for angle measures and side lengths in right triangles using trigonometric 

functions. 

Instruction 

(e.g. inquiry, 

preview, 

review, etc.) 

Entry task: the teacher draws a right triangle on the 

whiteboard and labels the three sides and angles. The 

teacher instructs students to write trigonometric expressions 

using the definitions of sine, cosine, and tangent that they 

learned yesterday.  

 

The teacher listens to students’ conversations about the 

entry task. The teacher listens for: 

• Correct answers (the entry task is a review of the 

prior knowledge students need to have for this 

lesson). 

• Correct justification for their answers. 

 

The teacher randomly chooses a pair to share their answer 

and justification with the class. 

The teacher asks the class if they agree or disagree with that 

answer and justification. Did any group approach this entry 

Students complete the entry 

task individually and write 

their answers in their math 

notebooks. 

 

Students discuss their answers 

to the entry task with a 

partner. Students justify their 

reasoning behind how they 

solved the entry task. 

 

 

Students participate in the 

class discussion. Students 

share ideas on how to 

 
86 Common Core State Standards for High School Mathematics (p. 77). 
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task differently? Note that students could have chosen either 

angle to be their angle of reference, so there is more than 

one possible answer to this entry task. 

 

The teacher introduces the learning target. 

 

 

The teacher writes the following problem on the 

whiteboard:87 

 

The teacher shows the students how to solve the problem 

using trigonometric functions. 

While the teacher solves this problem, she is intentional 

about vocalizing her thought process so that the students can 

follow her mathematical reasoning. 

The teacher introduces and emphasizes the academic 

language for this lesson as she uses it to explain her 

mathematical reasoning in solving these examples. 

When the teacher introduces the inverse trigonometric 

functions, she reviews what it means for two functions to be 

inverses with the class. 

The teacher also reminds the class to make sure that their 

calculators are in the correct setting when using the 

trigonometric functions (i.e. degrees vs. radians) and shows 

students how to use the trig and inverse trig functions on 

their calculators. 

The teacher tells students to check their work at the end of 

each problem by asking themselves whether or not their 

solution makes sense. 

approach this entry task 

differently. 

 

 

Students write the learning 

target in their math 

notebooks.  

 

Students follow along with 

the lesson by taking neat and 

detailed notes in their math 

notebooks and by using their 

calculators when instructed. 

Students know that at the end 

of every unit, the teacher will 

grade their notebooks by 

looking for: 

• Learning targets 

copied down for each 

lesson. 

• Detailed notes on the 

concepts and examples 

that were discussed in 

class. 

• Neatness and 

organization. 

• Individuality (e.g. 

notes in the margin, 

color-coded notes, 

arrows connecting 

ideas, etc.) 

 

 
87 Teacher’s Edition Algebra 2 and Trigonometry (p. 635). 
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Informal 

Assessment 

After the teacher completes each step in solving the 

examples above, she pauses to make sure that her students 

are following along. The teacher observes their nonverbal 

behavior to assess their understanding; the teacher clarifies 

the content when necessary. The teacher asks her students to 

look up at her when they are ready to move on to the next 

step in solving the problem. 

Students stay engaged in the 

lesson by looking up at the 

teacher when they are ready 

to move on to the next step in 

solving the problem and by 

asking clarifying questions 

when needed. 

Practice 

Activity 

 or 

Support 

The teacher divides the class into the mixed ability groups 

of four from day 1. The teacher writes the following 

problem on the whiteboard k times where k equals the 

number of groups.88 

 

The teacher assigns each group a space on the whiteboard 

and instructs them to work together to solve the problem 

using trigonometric functions. The teacher encourages them 

to refer to their notes, to follow the examples that they just 

did as a class, and to use the academic language from the 

lesson in their small group discussions. The teacher assesses 

the students’ progress toward the learning target by 

observing their small group work. The teacher listens for: 

• Correct use of the academic language for this lesson. 

• Students following the method that was outlined in 

the examples. 

• Every student actively participating and being 

included in the group work. 

• Students checking their solution to verify that it is 

correct. 

Students work in small groups 

to solve the problem using 

trigonometric functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
88 Ibid. (p. 639). 
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The teacher provides individual and small group instruction 

and support while students collaborate in small groups. 

The teacher randomly chooses a group to share their 

solution and justification for it with the class. The teacher 

asks the class if they agree or disagree with that answer and 

justification. Did anyone solve this problem differently? 

The teacher briefly summarizes what they learned in class 

today by connecting the learning activities to the learning 

target. 

 

 

Students participate in the 

class discussion. 

 

 

 

Students listen to the teacher. 

Closure 

Assessment 

of Student 

Voice 

The teacher gives each student an exit ticket with the 

following question on it: 

Write about how you would solve this problem using 

trigonometric functions and justify your reasoning 

(don’t actually solve it, just tell me the process that 

you would use to solve it and make sure that you 

justify why this process would work).89 

 

Students complete the exit 

ticket individually. 

 

Homework 

The teacher gives each student the following four problems 

for their homework assignment.90  

 

 

1.  

 
 

 

The students complete the 

homework and show all of 

their work. 

 

 

 

 

 

 

 

 

 

 
89 Ibid. 
90 Ibid. (pp. 635-639). 
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2.  

 
 

 

3.  

 
 

 

4.  

 
 

 

The teacher tells the students that the first three problems 

will be graded based on whether or not they were solved 

correctly and all of the student’s work was shown, but the 

fourth problem will be graded on whether or not the student 

attempted it. The fourth problem is an extension of what 

was learned in class today. 
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Lesson 

Days 3-5 

 

Teacher does 

 

Activity Description/Students do 

Title Applications of Trigonometric 

Functions 

 

Standard CCSS.MATH.CONTENT.HSG.SRT.C.6 

 

Understand that by similarity, side ratios in right triangles are properties of the angles in the 

triangle, leading to definitions of trigonometric ratios for acute angles.91 

Central 

Focus (CF) 

Students will construct their knowledge of the connection between similarity and side ratios 

in right triangles as properties of the angles in the triangle in order to solve problems 

involving right triangles using trigonometric functions. 

Academic 

Language 

Angle of elevation, angle of depression, angle of incidence, angle of reflection, acute angles, 

distance, altitude, angle measure, opposite, adjacent, hypotenuse, sine, cosine, tangent, 

trigonometric functions, inverse trigonometric functions. 

 

Apply knowledge to different real-world contexts and analyze the work of peers. 

Learning 

Target 

(LT) 

Students will connect the concept of trigonometric ratios to real-world applications to further 

their understanding of how side ratios in right triangles are properties of the angles in the 

triangle. 

Instruction 

(e.g. inquiry, 

preview, 

review, etc.) 

Teacher will write two review 

problems from the content that 

was learned the previous day 

on the whiteboard for students 

to complete as they enter the 

classroom. 

 

Teacher will instruct the 

students to share their answers 

to the entry task with a partner. 

o Teacher listens to the 

students as they pair-

share during the entry 

task. Teacher looks for 

students applying the 

procedural skills that 

they learned in the 

previous lesson to the 

problems in the entry 

task. 

Students will complete the entry task individually. 

 

 

 

 

 

 

Students pair-share. 

 

 

 

 

 

 

 

 

 

 

 

 

 
91 Common Core State Standards for High School Mathematics (p. 77). 
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Teacher will review the 

answers to the entry task with 

the entire class by calling on 

students to share and defend 

their answers. 

 

 

Students participate in going through the entry task as a 

class. 

Practice 

Activity 

 or 

Support 

Teacher introduces the 

learning target for the lesson. 

 

Teacher tells the class that 

they will be working in their 

groups of four from day 1 to 

solve six application problems 

on trigonometric ratios. The 

students will have two days to 

work in their groups on all six 

problems, and then on the 

third day, each group will 

present their solution to one of 

the problems to the class 

(every group member must 

participate in the presentation). 

However, they need to prepare 

presentations for all six of the 

problems because they won’t 

know which one their group 

will be presenting on until the 

third day. The presentation 

should include the following 

elements: 

• Labeled picture of 

problem. 

• Explanation of how the 

group approached 

solving the problem. 

• Explanation of how 

their application 

problem connects to 

the Learning Target. 

• Detailed and neat 

solution sheet that 

shows their work for 

Students work in groups of four on all six of the following 

application problems.92 They prepare solutions and 

presentations for all of the problems, but they will only 

present one of them to the class on the third day. The 

students won’t know which problem their group is 

presenting on until it is time to present. 

 

A. More people these days are exercising regularly. 

Exercise scientists measure the amount of work done by 

people in various forms of exercise so they can learn 

more about its effect. One popular form of exercise is 

walking on a treadmill. 

What features of a treadmill do you think would 

increase or decrease the amount of work done by 

the walker? 

One index that exercise scientists use is the 

percent grade of the treadmill. Percent grade is 

computed as 100 multiplied by the sine of the 

measure of the angle of elevation θ of the 

treadmill. Suppose θ is in standard position. 

Compute the percent grade of a two-meter 

treadmill with a vertical rise of 0.25 meters and of 

0.33 meters. 

How do you think the percent grade is related to 

the amount of work a person does on a treadmill? 

 

B. Steep hills on highways are the scourge of long-distance 

bikers. To measure the percent grade of a section of 

highway, surveyors use transits to estimate the average 

angle of elevation (or inclination) over a measured 

distance of highway. Then the percent grade is 

computed as 100 multiplied by the sine of the measure 

of the angle of elevation. 

If you ride down a straight 3-mile section of 

highway that has an 8% grade, how far do you 

drop vertically? 

 
92 Core-Plus Mathematics (Course 2): Contemporary Mathematics in Context (pp. 474-477). 



40 
 

each part of the 

problem. 

• Correct mathematical 

reasoning and 

procedures. 

• Correct interpretation 

of the application 

problem. 

• Find one more question 

to ask about the 

problem and solve it as 

a group. 

 

Teacher gives students a copy 

of the rubric to reference as 

they work on their application 

problems (see page 36). 

Teacher explains what the 

rubric means by high level 

cognitive demand for the 

question that each group poses 

to themselves. 

 

Teacher reviews the 

expectations for group work 

with the class. 

• Include everyone in the 

group work. 

• Ask questions. 

• Stay engaged in the 

group work. 

 

Teacher evaluates the 

students’ progress toward the 

learning target by observing 

their small group work on the 

application problems. Teacher 

listens to students’ 

conversations and helps guide 

them toward solving their 

application problems. 

If the angle of inclination of a 2-mile section of 

straight highway is about 4°, what is the percent 

grade? 

 

C. In Fort Recovery, Ohio, there is a monument to local 

soldiers who died in battle. Mr. Knapke, a teacher at the 

local high school challenged his class to find as many 

ways as they could to measure the height of the 

monument indirectly. Pedro, whose eye level P is 5.8 

feet, proposed a novel solution. He placed a mirror M 

on the ground 45 feet from the center of the 

monument’s base and then moved to a point 2.6 feet 

further from the monument where he could just see to 

the top of the monument in the mirror. He recalled from 

his earlier studies that the angle of incidence and the 

angle of reflection are congruent. 

Draw a diagram and show all of the given 

information. 

Figure out how Pedro found the height of the 

monument. What is the height? 

Describe another method to find the height of the 

monument. 

 

D. A survey team was asked to measure the distance across 

a river over which a bridge is to be built. They set up a 

survey post on their side of the river directly across 

from a large tree on the other side. Then they walked 

downstream a distance that they measured to be 400 

meters. From the downstream position, they sighted the 

survey post and then rotated their calibrated transit to 

the tree to find the sighting angle to be 31°. 

Determine the distance directly across the river, 

that is, from the survey post to the tree on the 

opposite bank. 

Determine the distance from the surveyors’ 

sighting point to the tree on the opposite bank. 

 

E. From the eye of an observer at the top of a cliff 125 

meters from the surface of the water, the angles of 

depression to two sailboats, both due west of the 

observer, are 16° and 23°. Calculate the distance 

between the sailboats. 

 

F. Commercial aircraft usually fly at an altitude between 9 

and 11 kilometers (about 29,000 and 36,000 feet). 

When an aircraft is landing, its gradual descent to an 
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airport runway occurs over a long distance. Assume the 

path of descent is a line. 

Suppose a commercial airliner begins its descent 

from an altitude of 9.4 km with an angle of descent 

of 2.5°. At what distance from the runway should 

the descent begin? 

Suppose a commercial airliner flying at an altitude 

of 11 km begins its descent at a horizontal distance 

270 km from the end of the runway. What is its 

angle of descent? 

The cockpit cutoff angle of an airliner is the angle 

formed by the pilot’s horizontal line of sight and 

her line of sight to the nose of the plane. Suppose a 

pilot is flying an aircraft with a cockpit cutoff 

angle of 14° at an altitude of 1.5 km. In her line of 

sight along the nose of the plane, she sights the 

near edge of a lake. How far is she from the edge 

of the lake, measuring along her line of sight? 

What is the horizontal distance to the near edge of 

the lake? 

Summative 

Assessment 

Teacher chooses a different 

group to present on each of the 

application problems. Teacher 

assesses the small group 

presentations. Teacher looks 

for evidence of students’ 

conceptual understanding, 

procedural skill and fluency, 

and understanding of their 

application problem in 

alignment with the standard 

for the 5-day lesson plan. 

Teacher assigns grades based 

off of the rubric on the next 

page and peer feedback. 

Students present in small groups on the application problem 

that their teacher assigns to their group on presentation day. 

When students are not presenting, they are evaluating the 

presentations of their peers using the Applications in 

Trigonometry Rubric on the next page. 
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Applications in 

Trigonometry 

Rubric 

Excellent 

4 

Good 

3 

Needs 

Improvement 

2 

Poor 

1 

Your 

Score 

Labeled picture 

of the problem 

Picture is neat, 

accurate, and 

labeled. 

Picture is somewhat 

neat, accurately 

drawn, and labeled. 

Picture is 

somewhat 

inaccurate. 

Picture is 

inaccurate. 
 

Explanation of 

how the group 

approached 

solving the 

problem. 

Explanation is 

detailed, thorough, 

and shows clear 

evidence of higher-

level cognitive 

thinking. 

Explanation is 

somewhat detailed 

and shows clear 

evidence of 

mathematical 

reasoning. 

Explanation is 

unclear and 

needs more 

details. 

Explanation is 

not given. 
 

Explanation of 

how their 

application 

problem 

connects to the 

Learning Target. 

Explanation is 

detailed, thorough, 

and shows clear 

evidence of higher-

level cognitive 

thinking. 

Explanation is 

somewhat detailed 

and shows clear 

evidence of 

mathematical 

reasoning. 

Explanation is 

unclear and 

needs more 

details. 

Explanation is 

not given. 
 

Detailed and 

neat solution 

sheet that shows 

their work for 

each part of the 

problem. 

Solution sheet is 

easy to read and 

follow and it shows 

all of the work and 

explains the 

mathematical 

reasoning behind 

each step in the 

solution. 

Solution sheet is 

easy to read and 

follow, but it misses 

a couple of details 

that should be 

included in their 

work and reasoning. 

Solution sheet is 

not easy to 

follow and it 

does not show all 

of the steps the 

group used to 

reach their 

solution. 

Solution sheet 

is not easy to 

follow and it 

does not show 

adequate 

evidence of 

work or 

reasoning. 

 

Correct 

mathematical 

reasoning and 

procedures. 

The method used to 

solve the problem 

works and is 

efficient. The 

answer is correct. 

The method used to 

solve the problem 

works, but it is 

inefficient. The 

answer is correct. 

The method used 

to solve the 

problem will 

work, but it was 

not performed 

correctly. 

The method 

used to solve 

the problem 

will not work. 

 

Correct 

interpretation of 

the application 

problem. 

Group demonstrates 

a strong 

understanding of 

their problem. 

Group demonstrates 

an adequate 

understanding of 

their problem. 

Group did not 

demonstrate a 

good 

understanding of 

their problem. 

Group did not 

understand 

their problem. 

 

Find one more 

question to ask 

about the 

problem and 

solve it as a 

group. 

 

Group asks a 

challenging question 

and demonstrates 

high level cognitive 

demand in their 

solution. 

Group asks a 

challenging 

question, but does 

not demonstrate high 

level cognitive 

demand in their 

solution. 

Group asks a 

straightforward 

question and 

solves it 

correctly. 

Group asks a 

straightforwar

d question, 

but does not 

solve it 

correctly. 

 

Total Points 
 

 
   / 28 
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Reflection 

 
 My five-day lesson plan synthesizes different components from the direct instruction 

and inquiry-based learning curricula, and it integrates conceptual understanding, procedural skill 

and fluency, and applications into the differentiated learning activities.  Day One is structured 

around an inquiry-based learning model that has students use similar right triangles to discover 

the relationship between the side ratios and angles of right triangles.  For the majority of the 

lesson, students work in groups while the teacher circulates the classroom.  Then, the teacher 

facilitates a whole-class discussion in which each group shares their findings with the rest of the 

class.  The teacher asks the class to identify what is similar about each group’s results in order to 

guide them toward concluding for themselves that side ratios in all right triangles are properties 

of the angles in the triangle by similarity.  At the end of the lesson for Day One, the teacher 

switches to a model of direct instruction to introduce the students to trigonometric ratios.  The 

purpose of this switch is to ensure that the students will walk away from the lesson having 

arrived at the intended concepts.  Furthermore, the students are instructed to memorize these 

trigonometric ratios, which constitutes a lower-level cognitive demand.93 However, this lower-

level demand is transformed into a higher-level cognitive demand in the lesson plans that follow 

in this sequence. 

Day Two is based off of a direct instruction approach to teaching students about how to 

solve for angle measures and side lengths in right triangles using trigonometric functions.  In this 

lesson, the teacher demonstrates the procedure for using trigonometric functions to solve 

problems with right triangles while the students follow along by taking notes.  Then, students are 

given the chance to practice following the procedure that their teacher outlined for them in both 

small group and individual settings.  While this method of instruction is efficient in transmitting 

the knowledge of how to procedurally use the trigonometric functions to solve problems with 

right triangles, the question of whether or not the students are able to conceptually understand the 

procedures that they are following depends on the knowledge that they constructed for 

themselves in Day One about the relationship between the side ratios and angles of right 

triangles.  Essentially, in the lesson plan for Day Two, we see a greater emphasis on what the 

teacher knows and is trying to communicate to the students than on what the students know and 

still need to learn, which, according to Healey, aligns with the attributes of a direct instruction 

curriculum.94 

The lesson plan for Days Three, Four, and Five synthesizes the procedural knowledge 

that students learned in Day Two and the conceptual knowledge that students constructed in Day 

One by having students make connections between trigonometric functions and real-world 

applications through inquiry-based group work on an assigned set of problems.  In this lesson, 

students are asked to apply what they learned through direct instruction in Day Two to figure out 

solutions to real-world problems without explicit guidance from their teacher.  Since the students 

are not being directly taught how to solve these application problems, this method of instruction 

is perhaps less efficient in terms of how much class time is spent on six problems; however, it is 

effective in developing students’ mathematical problem-solving abilities as well as their ability 

to use trigonometric functions in different real-world contexts.  Overall, direct instruction and 

 
93 Smith and Stein, “Selecting and Creating Mathematics Tasks: From Research to Practice” (p. 348). 
94 Healey, “Linking Research and Teaching: Exploring Disciplinary Spaces and the Role of Inquiry-Based Learning” 
(p. 70). 
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inquiry-based learning are both key components of my five-day lesson plan sequence; and while 

they both bring a different flavor to lesson plans in general, direct instruction and inquiry-based 

learning can be synthesized in a manner that effectively and efficiently differentiates 

mathematics instruction. 

The first lesson in my five-day sequence is primarily focused on developing students’ 

conceptual understanding of the relationship between trigonometric functions and right triangles.  

In the second lesson, procedural skill and fluency is tightly interwoven with the conceptual 

understanding from Day One as students learn how to procedurally solve for angle measures and 

side lengths in right triangles using trigonometric functions.  The final three lessons are centered 

on applications of trigonometric functions.  The application problems that students work on 

solving in those lessons intentionally build off of the conceptual understanding and procedural 

skill and fluency that were developed in the first two lessons.  Thus, all three components of 

rigor are tightly interwoven in the final three days.  Conceptual understanding is seen in isolation 

during the first lesson and in conjunction with procedural skill and fluency during the second 

lesson.  When real-world applications of trigonometric functions are introduced to students in the 

third lesson, we see an integration of conceptual understanding, procedural skill and fluency, and 

applications in each problem of the assigned set. 

Similar to what was observed in my analysis of the direct instruction and inquiry-based 

learning curricula, the three components of rigor may not always be seen with equal intensity in 

every individual lesson plan.  However, when we examine a sequence of lesson plans, it has been 

deemed essential by the Common Core State Standards that conceptual understanding, 

procedural skill and fluency, and applications are all integrated with equal intensity into the 

various modes of instruction whether it be direct or inquiry-based.95 My analysis and synthesis of 

direct instruction and inquiry-based learning curricula is relevant to the ongoing discussion on 

how mathematics should be taught because it illustrates a way in which strategies from both 

types of curricula can be realistically and rigorously implemented into a sequence of lessons.  

There are strong arguments for both sides of the direct instruction versus inquiry-based learning 

debate, but my project shows mathematics educators that we do not necessarily have to choose 

one system of teaching over the other; rather, as educators, we can effectively differentiate our 

instruction by synthesizing the assets that are present in both of these curriculum styles. 

 

 

 

 

 

 

 

 

 

 

 

 
95 High School Publishers’ Criteria for the Common Core State Standards for Mathematics (p. 3). 
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Glossary 
 

 

Applications—a component of rigor that is focused on connecting mathematical ideas to

 contextual problems by teaching students how to use content knowledge and skills to

 solve real-world problems.96 

 

 

Common Core State Standards—an educational initiative that specifies the expectations for what

 students in grades K-12 should learn at each grade level.97 

 

 

Conceptual Understanding—a component of rigor that is focused on developing students’

 understanding of key mathematical concepts.98 

 

 

Direct Instruction—a traditional style of teaching in which knowledge is simply and directly

 communicated by the teacher to the students.99 

 

 

Inquiry-Based Learning—a non-traditional style of teaching in which students actively

 construct their own knowledge through investigation.100 

 

 

Procedural Skill and Fluency—a component of rigor that is focused on providing students with

 opportunities to practice managing computational details with algebraic operations in a

 way that furthers students’ conceptual understanding of important mathematical

 principles.101 

 

 

Rigor—to pursue, with equal intensity, the three aspects of rigor: conceptual understanding,

 procedural skill and fluency, and applications.102 

 

 

 

 

 
96 Ibid. (p. 10). 
97 Ibid. (p. 1). 
98 Ibid. (p. 9). 
99 Kirschner, Sweller and Clark (2006). “Why Minimal Guidance During Instruction Does Not Work: An Analysis of 
the Failure of Constructivist, Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching” (p. 75). 
100 Ibid. 
101 Ibid. 
102 Ibid. (p. 4). 



46 
 

Works Consulted 

 
[1] Adnan, Mazlini (2013). “Learning Style and Mathematics Achievement among High

 Performance School Students.” World Applied Sciences Journal (pp. 392-399).

 Malaysia: IDOSI Publications. 

 

[2] Benson, John, Sara Dodge, Walter Dodge, Charles Hamberg, George Milauskas, and Richard

 Rukin (1991). Teacher’s Edition Algebra 2 and Trigonometry (pp. 610-639). Illinois:

 McDougal, Littell & Company. 

 

[3] Boaler, Jo (2008). What’s Math Got to Do with It? (pp. 1-30). London: Penguin Books. 

 

[4] Clements, Douglas H. (2007). “Curriculum Research: Toward a Framework for ‘Research

 Based Curricula’.” Journal for Research in Mathematics Education, Vol. 38, No. 1 (pp.

 35-70). Reston: National Council of Teachers of Mathematics. 

 

[5] Common Core Standards Writing Team (2013). Progressions for the Common Core State

 Standards in Mathematics: Grade 8, High School, Functions (pp. 18-21). Tucson:

 Institute for Mathematics and Education, University of Arizona. 

 

[6] Cuoco, Al (2009). Algebra 2: Center for Mathematics Education Project (pp. 680-777). New

 Jersey: Pearson Education, Inc. 

 

[7] Devlin, Keith (2008). “Lockhart’s Lament – The Sequel.” Devlin’s Angle (pp. 1-9).

 Washington D.C.: Mathematical Association of America. 

 

[8] Dingman, Shannon, Dawn Teuscher, Jill A. Newton, and Lisa Kasmer (2013). “Common

 Mathematics Standards in the United States: A Comparison of K-8 State and Common

 Core Standards.” The Elementary School Journal, Vol. 113, No. 4 (pp. 541-564). The

 University of Chicago Press. 

 

[9] Healey, Mike (2005). “Linking Research and Teaching: Exploring Disciplinary Spaces and

 the Role of Inquiry-Based Learning.” Reshaping the University: New Relationships

 between Research, Scholarship, and Teaching (pp. 67-78). New York City: Open

 University Press. 

 

[10] HCPSS Secondary Mathematics Office (v2.1); adapted from: Leinwand, S. (2009).

 Accessible mathematics: 10 instructional shifts that raise student achievement.

 Portsmouth, NH: Heinemann. 

 

[11] Hirsch, Christian R., James T. Fey, Eric W. Hart, Harold L. Schoen, and Ann E. Watkins

 (2008). Core-Plus Mathematics (Course 2): Contemporary Mathematics in Context (pp.

 457-487). New York City: McGraw Hill. 

 

[12] Jacobsen, Douglas and Rhonda Jacobsen (2004). Scholarship & Christian Faith: Enlarging

 the Conversation. New York: Oxford University Press. 



47 
 

 

[13] Kidder, Tracy (2009). Mountains Beyond Mountains: The Quest of Dr. Paul Framer, A Man

 Who Would Cure The World. New York: Random House. 

 

[14] Kilpatrick, Jeremy, Jane Swafford, and Bradford Findell (2001). Adding It Up: Helping

 Children Learn Mathematics. National Research Council, Mathematics Learning Study

 Committee, Center for Education, Division of Behavioral and Social Sciences and

 Education. Washington, DC: National Academy Press. 

 

[15] Kirschner, Paul A., John Sweller, and Richard E. Clark (2006). “Why Minimal Guidance

 During Instruction Does Not Work: An Analysis of the Failure of Constructivist,

 Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching.” Educational

 Psychologist (pp. 75-86). London: Routledge. 

 

[16] Larson, Ron, Laurie Boswell, Timothy D. Kanold, and Lee Stiff (2012). Algebra 2 

(pp. 610-677). Florida: Houghton Mifflin Harcourt Publishing Company. 

 

[17] Leikin, Roza, and Anat Levav-Waynberg (2007). “Exploring Mathematics Teacher

 Knowledge to Explain the Gap Between Theory-Based Recommendations and School

 Practice in the Use of Connecting Tasks.” Educational Studies in Mathematics (pp. 349-

 371). Germany: Springer Science + Business Media B.V. 

 

[18] Lin, Amy, and Marian Small (2010). “Why and How to Differentiate Math Instruction.”

 More Good Questions: Great Ways to Differentiate Secondary Mathematics Instruction

 (pp. 1-10). New York City: Teachers College Press. 

 

[19] Lockhart, Paul (2002). A Mathematician’s Lament (pp. 1-25). New York City: Bellevue

 Literary Press. 

 

[20] Marsden, George M. (1997). The Outrageous Idea of Christian Scholarship. New York:

 Oxford University Press. 

 

[21] National Governors Association Center for Best Practices, and Council of Chief State

 School Officers (2010). Common Core State Standards for High School Mathematics

 (pp. 75-78). Washington D.C.: National Governors Association Center for Best

 Practices and Council of Chief State School Officers. 

 

[22] National Governors Association, Council of Chief State School Officers, Achieve, Council

 of the Great City Schools, and National Association of State Boards of Education

 (2013). High School Publishers’ Criteria for the Common Core State Standards for

 Mathematics (pp. 1-18). Washington D.C.: National Governors Association Center for

 Best Practices and Council of Chief State School Officers. 

 

[23] Polikoff, Morgan S. (2015). “How Well Aligned Are Textbooks to the Common Core

 Standards in Mathematics?” American Educational Research Journal, Vol. 52, No. 6

 (pp. 1,185-1,211). Washington, D.C.: American Educational Research Association. 



48 
 

 

[24] Porter, Andrew, Jennifer McMaken, Jun Hwang, and Rui Yang (2011). “The New U.S.

 Intended Curriculum.” Educational Researcher, Vol. 40, No. 3 (pp. 103-116).

 Washington, D.C.: American Educational Research Association. 

 

[25] Schmidt, William H., and Richard T. Houang (2012). “Curricular Coherence and the

 Common Core State Standards for Mathematics.” Educational Researcher, Vol. 41, No.

 8 (pp. 294-308). Washington, D.C.: American Educational Research Association. 

 

[26] Smith, Margaret Schwan, and Mary Kay Stein (1998). “Selecting and Creating Mathematics

 Tasks: From Research to Practice.” Mathematics Teaching in the Middle School (pp.

 344-350). Pittsburgh: National Council of Teachers of Mathematics. 

 

[27] Thompson, Denisse R., Sharon L. Senk, and Gwendolyn J. Johnson (2012). “Opportunities

 to Learn Reasoning and Proof in High School Mathematics Textbooks.” Journal for

 Research in Mathematics Educations, Vol. 43, No. 3 (pp. 253-295). Reston: National

 Council of Teachers of Mathematics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 
 

Appendix: Faith and Learning 

 
Ambiguity & Persistent Faith: An Essay on What Kind of Scholar Am I? 

 

 Education and hard work have always been the “religion” that my family follows.  The 

central belief of it is that if you work hard and do well in school, then you will have a bright 

future.  I was taught that education would be the key to my future, and that this key would 

unlock all sorts of possibilities for me.  Another characteristic besides hard work that has always 

been highly valued by my family is independence, namely, the ability to support oneself.  I 

became a Christian (non-denominational) when I was in eighth grade, and while my faith was 

very important to me, I didn’t understand how it could be connected to my work as a student, 

which resulted in a complete disassociation between the spiritual and academic realms of my 

life.  Looking back on it now, I would describe my Christian faith during high school as 

inherently individualistic, which is a description that still, to a certain extent, applies to my faith 

today.  Of course, seeing myself and my faith from an individualistic perspective is very 

reflective of the Western culture in which I have always lived, but it is also reflective of my 

desire to be a “self-sufficient” Christian.  I hope that desire sounds a little off target to you too 

because I have since learned that by identifying as a Christian, I am actually acknowledging that 

I am insufficient on my own and that I need the grace and guidance of God in every area of my 

life.  While this acknowledgement may sound quite lofty and cliché, it encompasses the core of a 

truth that I find so refreshing to internalize in the midst of a society that is obsessed with 

productivity: my worth is not measured by my accomplishments. 

 One particularly transformative experience that helped me to see my need for God and 

community in my life was when I studied at Stanford University during the summer before my 

last year of high school.  I had never felt so alone or so afraid of failing before, yet one of the 

greatest lessons that I learned from my experience at Stanford was how to see myself apart from 

my academic successes and failures.  I have always felt as if my grades define a significant part 

of who I am because I have always understood them to be reflective of my work ethic—and I 

pride myself in being a very hard worker.  While caring about grades and being a hard worker 

both sound like great attributes, I have oftentimes taken them to such unhelpful extremes that I 

do not know how to define myself without them.  However, I am learning how to see past such a 

narrow-minded view of myself so that I am no longer defined by my academic accomplishments, 

but by something much more intangible and integral to who I am as a person of faith and hope in 

a world of ambiguity and uncertainty. 

After much reflection, I have identified three faith commitments that are at the very core 

of who I am and who I want to be as a scholar.  The first is my commitment to being “all in” 

when it comes to Christian scholarship.  I have struggled for a long time with how to breach the 

gap between my academic work and my spiritual beliefs, and while I am still learning the ways 

in which scholarship and Christianity can intersect in my life, I am committed to eliminating the 

separation between them.  In Scholarship & Christian Faith: Enlarging the Conversation, 

Douglas and Rhonda Jacobsen deconstruct the expectation that many Christian scholars may 

have about finding “neat and tidy” answers to their questions about how faith and scholarship 

can and should interact.103  They argue that when it comes to studying pertinent questions of 

 
103 Jacobsen, Douglas and Rhonda Jacobsen (2004). Scholarship & Christian Faith: Enlarging the Conversation. New 
York: Oxford University Press (p. 21). 
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Christian scholarship, all understanding is “tentative and fragile,” both of which are seemingly 

contradictory descriptors of how most scholars may perceive scholarship.104  Essentially, the 

Jacobsens believe that connecting faith to scholarship and scholarship to faith is an ongoing 

process.  Furthermore, they view Christian scholarship as a way through which all aspects of 

one’s life can be connected, including faith and learning.  I recognize that while I may prefer 

“neat and tidy” answers to my questions about the intersection between faith and learning, I must 

be willing to embrace the ambiguity and fragility that characterize Christian scholarship because 

failure to do so could ultimately lead me to a state of self-deception and an unwillingness to 

challenge my own convictions. 

My second faith commitment is to being transparent with God.  At first, this commitment 

may sound a little silly because God already knows everything about me, but I can tell you that it 

really matters and makes a difference in how I conceptualize what it means to be a Christian 

scholar.  I think the most important consequence of having transparency before God is that it 

makes my relationship with God unscripted.  No longer am I pretending that being both a 

Christian and a scholar is easy and that there are not any challenging questions and situations that 

arise from being a Christian scholar in a predominantly secular world.  Instead, I am committed 

to taking my Christian faith out into the world in a way that is unscripted and unchartered—but 

for the record, let it be known that I would prefer an explicit script and path to follow. 

My third faith commitment is to accepting the mystery and ambiguity that characterizes 

the life of a Christian scholar.  In Chapter Two of Scholarship & Christian Faith: Enlarging the 

Conversation, Douglas and Rhonda Jacobsen highlight the work and theories of Nancey Murphy, 

a Christian scholar who rejects the modern idea that belief equals knowledge if and only if it is 

based on objective facts and valid logic.  Murphy argues that knowledge is unavoidably complex 

and that everything is dubitable, which doesn’t make it sound all that appealing to me.  She 

believes that true Christian scholarship has more to do with questions and less to do with 

answers, a characteristic that may make most scholars, including myself, feel rather 

uncomfortable.  Murphy argues that it is essential for faith and scholarship to be connected, and 

she believes that Christian scholars can make this connection by allowing their learning and faith 

to interact; however, she acknowledges that when learning and faith interact, they may point in 

different directions.  As a Christian scholar, I recognize the ambiguous nature of true knowledge; 

and so instead of ignoring the points of tension between Christianity and scholarship, I will strive 

to settle into the mystery without looking for an easy way out. 

My faith background and commitments are the foundation for my work as a high school 

mathematics teacher.  I want my students to receive an equitable and rigorous education and to 

feel academically empowered in my class.  For my honors project, both of these hopes were 

important motivators in my decision to analyze two contrasting teaching strategies in 

mathematics curricula through a framework that evaluates how they meet the expectations for 

rigor in math education.  Through my analysis of these different instructional strategies, I am 

hoping to gain insight that will help me in developing my pedagogical philosophy regarding how 

I will cultivate an equitable and rigorous learning environment in my classroom. 

As a teacher, I want to encourage and require my students to take ownership for their 

own learning.  One way in which I will do this is by setting high academic and behavioral 

expectations coupled with a high level of differentiated support for my students.  I also want to 

acknowledge the fact that mathematics is a very challenging subject for many students, and I 

want to teach my future students to embrace the challenge and engage in the struggle of learning 
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mathematics. 

As a Christian scholar and prospective teacher, one important question for me to consider 

is how do I uphold my faith values in a secular education system?  One of the greatest truths 

about teaching is that the potential impact teachers can have on the lives of their students cannot 

be overstated. Students remember their high school teachers.  However, they remember more 

about who their teachers were to them and the examples that their teachers set for them than the 

subject matter that their teachers taught.  This statement is not meant to minimize the importance 

of a rigorous curriculum; rather, it is meant to emphasize the importance of character when it 

comes to teaching.  I think that the most impactful way to uphold my faith values in the 

classroom is by being a teacher who cares for her students in a way that exemplifies grace, 

dignity, and respect. 

In The Outrageous Idea of Christian Scholarship, Marsden argues that it is imperative for 

Christian scholars to be a part of the “mainstream academy” and to not remove themselves from 

the rest of the academic world.105  Christian scholars contribute an important perspective and 

attitude to the academic world, and so instead of feeling like we have to choose between 

assimilation and separation, Marsden believes that we should courageously integrate our 

theological beliefs into our various disciplines in ways that appropriately complement our 

academic endeavors.  As a teacher, I will bring my Christian faith into the classroom every day 

through the ways in which I teach, care for, and interact with my students. 

Similar to Paul Farmer in Mountains Beyond Mountains, I feel a strong calling to help 

others.  While I may not be saving lives in the same sense that Farmer does as a doctor, I believe 

that I will have the opportunity to make a meaningful difference in the lives of my students by 

providing them with opportunities to learn and see that they are all capable of being scholars, 

regardless of what others have said and what they have previously believed about their academic 

abilities.  Students are oftentimes labeled as academically gifted or challenged from a young age, 

and studies have shown that these labels can have a serious impact on how students view 

themselves as well as how they apply themselves academically.  As a teacher, I want to disrupt 

this pattern of assigning students rigid labels that inappropriately define and limit their academic 

capabilities by instilling within my students a strong sense of self-worth and self-efficacy. 

One of the most frustrating aspects of both my academic discipline and my commitment 

to the Christian faith is that there are no perfect formulas for how to be an effective teacher or a 

faithful Christian.  I find this to be very frustrating because I really like to have formulas to 

follow—which may be one of the reasons why I am pursuing a degree in mathematics. While 

there is no clear-cut formula for being a Christian, the caveat to this statement is that Christianity 

in our Western culture does not always portray such an ambiguous message.  I believe it is a 

common misconception by both Christians and non-Christians alike that there is a standard 

formula of sorts that makes a person a “good Christian.”  Some parts of this formula may include 

being baptized, going to church every Sunday, and reading the Bible every day. 

Yet, in my opinion as well as Paul Farmer’s, that is not enough.  Farmer articulates this 

belief when he says to Tracy Kidder, “That’s when I feel most alive…when I’m helping 

people.”106  As a Christian scholar, I believe that I am called to help people in whatever way God 

has equipped me to do so.  While I may not know all that such a calling entails, I rest in the faith 

 
105 Marsden, George M. (1997). The Outrageous Idea of Christian Scholarship. New York: Oxford University Press 
(p. 100). 
106 Kidder, Tracy (2009). Mountains Beyond Mountains: The Quest of Dr. Paul Framer, A Man Who Would Cure The 
World. New York: Random House (p. 38). 
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that God will be with me throughout the entirety of my journey as I seek to live out this calling to 

help others in some way.  I believe that Christianity and scholarship must go together in my life, 

but I am still learning how exactly these two distinct facets of knowledge intersect in my 

academic discipline.  All in all, Christian scholarship is challenging yet worthwhile, mysterious 

yet illuminating, and ambiguous yet fruitful. 

I am a Christian scholar who is learning to live with ambiguity in a world that is even 

more intricate than I imagined while also seeking to uphold my faith values through a life 

committed to stewarding the intellectual gifts of others.  My hope for my continued studies as a 

Christian scholar is that when uncertainty clouds the horizon, I will seek the truth in a way that is 

both accepting of ambiguity and persistent in my faith. 
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