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Abstract

Mathematics is seen as cold and calculating, while music is seen as expressive and beautiful. By
composing Claude Debussy’s Syrinz in terms of mathematical equations, we will be using Fast
Fourier Transforms in MATlab to turn our frequencies from time-frequency to frequency amplitude
domain to find Fourier Coefficients. Afterwards we will take these coeffificents and use them to
recreate the sound using sine equations. This process will allow us to dive deeper into the beauty
of mathematics.

Music Intro

Note, that this project will include interdisciplinary aspects regarding music and mathematics.
We will be using mathematical terms frequency, harmonics, and amplitude. Refer to .1 for more
information.

Introduction Math

In the scope of this project, we will focus our attention on how to model music specifically for
flute using mathematics. Before we continue, let’s think of sinusoidal and co-sinusoidal waves in a
different perspective. If we are in the Complex Plane Re? where R is the radius and 6 is the angle
in radians in a trigonometric setting. Now note , we can think of points as a having an X = Rcos(6)
and Y = Rsin(0)

Observe that,

¥ = cos(0) + isin(6)

Re” = Rcos(0) + iRsin(6)

Additionally, this can € can vary with time which we will call § = wt which than our equation
becomes:

Re™' = Reos(wt) + iRsin(wt)

Note that we will be thinking of Re™? as a vector with magnitude R and spinning counterclock-
wise at omega radians per second. With this definition in mind we want to visualize sine or cosine
as counter-rotating vectors. [?]. Furthermore, the only distinction between sine and cosine waves
is the our definition of time origin. Consequently, we will be using mathematical function sin to
represent our waves.

Intro to Fourier Analysis

Fourier Analysis is the study of how general functions can be decomposed into trigonometric func-
tions with definite frequencies.

From this, we can take two different approaches to Fourier Analysis. Our first approach is using
an Fourier Series which is normally taken with periodic functions continuous or discrete, and our
second approach are Fourier Transforms which is applies to more general functions that are not
necessarily periodic but can be either continuous or discrete. [?]



Fourier Series and Music

With this, we are now equipped with theoretical knowledge of how we can model sinusoidal waves.
Recall, that sound waves are sinusoidal. Now we are able to decompose sinusoidal waves into
different waves but are unable to extract the specific frequencies. With a Fourier Transforms we
are able to take an audio signal such as a wav file, a common music file, and represent it in terms
of frequency and amplitude which is called frequency-domain rather than the time-domain which is
represented in time and volume.

From a mathematical perspective, notice we can have two different types of series: a finite series
or infinite series. However, in the music world, we are unable to have infinite sound because it
dampens and decays. Consequently, this leads to a finite Fourier Series which will lead us using the
Discrete Fourier Transform (DFT).

When we find the Fourier Coefficients of our Discrete Transform we will be using the Fast Fourier
Transform or FFT. Note that we choose to use the FFT for its efficiency. Similar to the DFT, it
is a collection of trigonometric sums to some length N. The difference is that FFT factors in the
weights of each of these terms with the use of periods and symmetries to effectively shorten how
many sums actually affect the summations.

Now, we have figured out we will calculate these Fourier coefficients but we run into a problem of
turning an infinite series to a finite series. Because of the periodic and symmetric form of sinusoidal
waves, if we create a finite sums, we might run into the issue of not creating a full period. In this
case, what our algorithm would do is to fill in our missing period by starting a new period over
it such that we have extra information. In this case what we would have to do is use an spectral
analysis technique called aliasing. This is where we filling our missing data by creating using other
sinusoidal waves that have the same nodes as our original wave would have if it completed its full
periodic cycle.

Mathematical Modeling Methods

Now, we are going to go emphasize certain key aspects of the project in relation to our methods.

To begin modelling Claude Debussy’s Syrinz, we began by playing the notes on the flute that
we wanted to model with. We played 15 different notes, and recorded them using Pro Tools. The
notes we recorded were the notes that appeared in the first two measures of Syrinx: B flat 5, A5,
B5, A flat 5, G5, A5, G flat 5, F5, E5, D flat 5, C6, B flat 4, F sharp 4, G4, and B4. After recording
these notes, we downloaded their wav files .1 and exported it to MatLab. From here, we created
scripts for each of the individual notes, and find Fourier Coeflicients for each of the notes.

Our process will be graphing each note in frequency-amplitude and then model each of its
harmonics. There are generally nine playable overtones on the flute, but there can be as many up
to twenty-seven. [?] In the scope of this project, we will use four harmonics: the fundamental tone,
an octave higher, a perfect fifth above and then two octaves above the fundamental. .1. We have
made this decision to encompass some of the timbres of the flute, but also knowing that we would
not been able to capture all of them due to time constraints. [?]



Figure 1: Bb4 Frequency- Amplitude Domain
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After loading each individual wav file for each of the notes, we want to find the Fourier Coeffi-
cients, Therefore, we first need to take our notes from the time-frequency domain into the frequency-
amplitude domain. 1 We do this by using our Fast Fourier Transform algorithm. Note that each
peak in 1 represents an harmonic with the highest peak representing the fundamental tone. Re-
member we are only doing the first four due to that being the least number of harmonics to fully
capture the flute timbre.



Figure 2: Bb4 Fourth Harmonic Modelling
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After this, we then fit our four harmonics using Gaussian distributions and changed the interval
we were looking at based off the harmonic we were observing. 2 It was a trial and error process
that we repeated and there was an average 3 models per each harmonic which made 12 models for
each note. In total, we have found 60 unique Fourier Coefficients for our 15 notes.

After finding our Fourier Coefficients, we needed to create time arrays which allowed us to graph
in the time-frequency domain for each of our notes. These time arrays allowed us to map certain
frequencies on a scale of time. Then from here, we were able to change our sampling rate to get more
accurate readings. Lastly, for each individual note, we then compiled and created a sine equation
which included the four harmonics with their respective frequencies and amplitudes.

After creating the sound, we changed the sampling rate to allow for variation which causes this
idea of rhythm within the lines. This now results in our rendition of Syrinz, composed of code,
mathematical equations and an audio file.

To see the full mathematical composition refer to .3

Now we will discuss the implications of this research by asking what is music seen as beuatiful
while mathematics is not.

Defining Beauty

As expected, it will be hard to define beauty especially "mathematically beauty, but just as true
of beauty of any kind - we may not know quite what we mean by a beautiful poem but does not
prevent us from recognizing one when we read it?" |?|

Beauty is "the quality or aggregate of qualities in a person or thing that gives pleasure to the
senses or pleasurably exalts the mind or spirit." [?]

From this definition, we can see that "exalting the mind and spirit" appeals to the beauty of
math. For mathematicians, "exalting the mind" implies working through problems and figuring
out greater truths. However, solving problems includes two aspects: the solution itself and the



key ideas they communicate. A famous example, Euclid’s Proof of the Infinitude of Primes, which
states that given any collection of prime numbers there is at least one prime number. [?] The
beauty of Euclid’s proof is in it’s simplicity and elegance of how he wrote the proof. So his solution
is considered beautiful for just the presentation of the solution. Furthermore, the idea communicated
in it in which there are an infinite number of primes is beautiful as well, because of it’s implications
in the creation of mathematical knowledge.

Aesthetic Subjectivism and Aesthetic Objectivism

Some will argue, that "Beauty is in the eye of the beholder, " while this may hold some substance,
there exists some universal beauty standard we hold ourselves too. For instance, a musical perfor-
mance from a fifth grade talent show versus the musical performance from professional musicians.
Generally, without any objectivity this would equate both the the fifth grade musical performance
with the professional musicians. There would be no way to objective standards to judge beauty. [?]
We would describe this as Aesthetic Subjectivism. [?| To give a more formal definition, Aesthetic
Subjectivism is the belief that aesthetic judgements do not state facts about the world, but merely
reflect and observer’s response to some aspect of the world. [?]| Solely subscribing to Aesthetic
Subjectivism can be problematic because it violates our common sense of value and superiority. For
instance a Monet’s Water Lilies are superior works of art compared to a child’s water lily finger
painting despite the parents’ emotional attachments. Therefore there must be some claim to say
that beauty can at least be partially judged objectively. We call this Aesthetic Objectivisim. For a
more formal definition, Aesthetic Objectivism is the belief that aesthetic qualities are properties of
the objects that are independent of an observer’s awareness.

There is the argument that what if people can not find the beauty of mathematics or any subject.
In this, think of Imannuel Kant’s Critique of Judgement. "the judgement of taste is subjective."
Meaning that mathematical beauty still exists regardless whether people can find the beauty in it
or not. Granted, we should help others find this beauty, but we should not let others belittle it
because they do not understand it.

Different Types of Mathematical Beauty

Music has been historically seen as beautiful; however mathematics is not. Mathematics is seen
as cold and calculating. This is not true, people have "not had a chance to experience it, or
they experience it but not recognized as the experience as mathematical. [?] Mathematics has
been taught in a manner in manner which causes it to become formulaic. However, we have just
rewritten Syrinz as a mathematical composition. Each note is composed of audio data that we
analyzed into their respective frequencies and harmonics. We then rewrote the sound in terms of
sinusoidal waves. Why do we consider beautiful but not music, especially since we have shown that
music is just mathematics.

From here we will draw the comparison between the parallels the beauty of music to the beauty
of mathematics. Additionally, we will further this exploration with the connection of music file.

Sensory Beauty

Now music is seen as beautiful because it is able to be experienced through the senses: the pleasant-
ness of the sound and the emotions entailing it. Additionally music allows us to be in awe of what
the melodies and harmonies that transpired. Musicians perform difficult technique passages with



ease and are able to convey stories by creating sounds out of thin air. From here, musicians are able
to take certain stories and ideas and bring a more universal truth. For example, in Tchaikovsky’s
Romeo and Juliet Overture he tells the story of Romeo and Juliet through music which can be
alluded to more thematic universal truths. One of them being, the idea of labels and names which
lead to our prejudices.

The idea of being experience music through the senses is called, sensory beauty. Sensory beauty
not only applies to sound, but all the senses as well.

In math, this beauty is applied to patterned objects that we can experience with the sense:
sight, touch and sound. [?]. Additionally, mathematical sensory beauty presents itself in nature
and art.

In nature, mathematics is present through patterns. The famous example is the Fibonacci
sequence. This sequence originates from how rabbits reproduced given that each pair has one male
and one female. This one question resulted in seeing this pattern everywhere in nature. It is seen
on the seeds of sunflowers, cauliflower, and pine-cones. Futhermore, it is seen storms and how they
spiral and move. Even the human body follows this pattern. With our 1 nose, 2 eyes, 3 segments
to each limb and 5 fingers. Mathematics is seeing and applying patterns in different contexts.

In art, mathematics is presented in the creation of parallel lines in artwork. In the Last Supper,
the parallel lines on the ceiling are constructed by created an intersection point at infinity. This
gives us the illusion of parallel when they don’t look like it.

Moreover, in mathematics a famous example of sensory beauty is fractals. In essence fractals are
repeated patterns that keep repeating despite zoomed in a person gets to it. The most famous of
these examples include the Fibonacci Sequence, which is most commonly seen in nature. It is seen
through Romanesco Cauliflower, Sunflower seeds, sea shells, and much more. Additionally, there
is also the Koch’s snowflake and snowflake sweep. Both of these are examples of fractals and once
combined produce beautiful images that capture one’s attention. [?]

Specifically in this project, we appeal to sensory beauty of math through sight and sound. We
can see the physical representation of our equations, and we can also hear them.

There are many possible feelings and emotions can be tied to this: awe, confusion, intrigue,
but we brought it to life by coding it. Granted the sound itself seems devoid of emotion, as it is
a generated through the computer, but the creation of this project allows us to reconsider what it
means to be beautiful. This speaks to the creation of knowledge and the technical ability to create
a reproducible audio clip of a famous flute solo.

Wondrous Beauty

Additionally, music has this feeling of being in awe, this is called wondrous beauty. In mathematics
and especially during this project, wondrous beauty can also be ascribed as sparking one’s curiosity.
In the creation of the audio file, there were many questions: is there a way to solve this problem
to get my desired result. This was a constant throughout the entire process of creating a computer
generated sound modelling music. This is one aspect in which math is beautiful, because it allows
us to understand the how and why behind ideas.

While sensory beauty and wondrous beauty are related, each type of beauty possess the ability
to be independent of one another. [?] In mathematics, the beauty lies in the idea and main concepts.
Therefore certain equations can be be admired for their physical beauty but also for the content
they contain. The beauty from my audio file, is pleasing to the senses but is also beautiful in it’s
ability to represent that music is mathematics written in a different way. Each individual note can
be written as a sum of sinusoidal waves with each wave representing a different harmonic.



This aspect of mathematical beauty differs slightly from music, because music evokes awe and
a sense of calm, while mathematics evoke curiosity and start the process of understanding the
mechanics of the world. The reason for this difference is that music itself is about a temporary
interpretation of the piece. This piece gets interpreted in different ways over the years, but the
beauty is from a fleeting moment. In mathematics, the beauty is in the permanent truth of ideas
and proof. The idea is permanent in which other mathematicians can build and expand upon this
beauty in concrete permanent ways.

Insightful Beauty

To be warned, insightful beauty is where the stereotype of mathematics being cold and devoid of
emotion originates because it focuses on the art of understanding through reason. This is called
insightful beauty. |?] From here, this is where people understand and find solutions to their problems.

Musicians use reason and logic to figure out the counts of beats, to diagnose potential problems
in the music, but this aspect of music does not get represented or even listed as one of the motivating
factors to perform music.

However in math, this gets constantly gets applied. Figuring out the least amount of food to
order to feed enough people, from figuring out how to get people into space. Note that, these
insights can be instantaneous but also an appreciation over time. Because learning is a lifelong
activity. Furthermore insightful beauty in mathematics is best exemplified through the art of proof
in which we look for the simplest or most insightful proofs to truly understanding the mechanics of
the world.

This is the power to communicate ideas effectively.

During this project, there were obstacles to overcome: figuring out the code to learn how to find
the coefficients, figuring out the best model to accurately represent the amplitude and frequencies
of the different harmonics, figuring out how to best reproduce the sound in a way that is similar
to the original piece. Understanding higher level math such as Fourier Analysis to comprehend the
theory that the computer is doing. We struggled throughout these troubles of problem solving, but
we continued to preserve because there must be a solution and refused to give up. Because of this,
"The beauty of mathematics only shows itself to more patient followers." [?], meaning to gain insight
there will be struggle. This is true in anything humans do, but especially true in mathematics. This
is part of the beauty of doing math. Do not be discouraged.

Transcendent Beauty

Lastly, music connected us to some more greater truth: to help us with our grief, to enjoy time with
our friends by singing at the top of our lungs, to calm our soul. This is called transcendent beauty.
This is the beauty that moves from a specific object, idea, or musical piece to a greater truth to
reveal significance in the world. [?]

In math, this is the connection of our ideas and theorems to get a better understanding of the
universe. It relates us to a greater truth than ourselves. This is usually seen through the ideas
surrounding the paradox between the infinite, finite, and zero. Additionally is seen through ground-
breaking ideas that change our perspective on the world, such as the law of gravity, the theory of
spatial relatively, the Pythagorean Theorem, and many more.



Conclusion

In this project, this transcendent beauty is the connection of the different academia disciplines that
bring beauty into the world. While some are deemed more useful such as STEM, and others are
deemed useless such as the humanities. There should be no superiority between different types of
knowledge because they intersect more than people believe. If we focus on the attributes of one
discipline than another, then we have truly lost some of understanding of the world and our human-
ity. Because the true beauty of knowledge lies within the complexity between reason and emotion.
English is beautiful. History is beautiful. Mathematics is beautiful. These subjects are beautiful
in their own ways but each has their own unique type of beauty. If we truly decided to define one
form of beauty, we have lost all meaning for the word.

Mathematics is beautiful.



Appendices



.1 Definition Appendix

definitionPitch /Frequency| Frequency is the quantity the represents the number of times the object
vibrates in each unit of time. To calculate this we used f = 5~ where f is frequency, w is the

angular frequency, and where 27 is the ther period of the sine wave

definitionHarmonics/Overtones| A harmonic is a sound wave that has a frequency that is an
integer multiple of a fundamental tone.

definitionAmplitude/Volume| Amplitude is the distance between the resting position and the
maximum displacement of the wave. In other words, the peaks and valleys of sine waves.

definitionwav files| a file format for storing the uncompressed audio files meaning they are not
smaller and they have more data.

definitionhe fundamental tone is the lowest frequency of the periodic waveform. In music this is
the musical pitch of a note with the lowest overtone present.

definitionOctave| A musical interval where one note has twice the frequency of the other or half
the frequency of the other.

definitionPerfect Fifth| A musical interval to a pair of notes that have a frequency ratio of 3:2
or the first note with 5 notes in between including the first note.

definitiontimbre| The character or quality of a musical sound which is distinct from its pitch
and its intensity. Example: the trumpet and clarinet have two different timbres. The trumpet is
bright and brassy where the clarinet is sounds more woodsy and dark.

10



.2 Coding Notes Appendix

[g4,Fs]= audioread('g4.wav');

gdcps = 1/Fs

gd_ L = size(g4, 1);
g4 _Fn = Fs / 2;
g4 _Fty = fft(gd/gd_L);

g4 _Fv= linspace (0 ,1, fix(g4_L/2)+1)*gd _Fn;

g4_Iv = 1:numel(g4_Fv);

plot (g4_Fv, abs(gd_Fty(gd_Iv,:))*2)
xlabel ('Frequency (hz)"')
ylabel ('Amplitude')
title ('G4 Frequency')

g4_tf = excludedata(g4_Fv',abs(g4_Fty(g4_Iv,1))*2x10~(1/3),
"domain', [380 400]);

g4 _funfirstfit = fit( g4_Fv', .
abs (g4 _Fty(g4_Iv,1))*2x10~(1/3),
'gaussl',

"Exclude',
g4_tf);

g4_tf3 = excludedata(g4_Fv',abs(gd_Fty(gd_Iv,1))*2%x10~(7/24),
"domain' , [380 400]);
g4_funsecondfit = fit( g4_Fv',

abs (g4 _Fty(gd_Iv,1))*2%x10~(7/24),
'gaussl',

11




"Exclude',
gd_t£f3);

g4_tf3 = excludedata(gd_Fv',abs(gé4_Fty(gé_Iv,1))*2*x10~(1/10),
"domain', [380 400]) ;

g4_funthirdfit = fit( g4_Fv',
abs (g4 _Fty(gd_Iv,1))*2x10~(1/6),
'gaussl',
"Exclude',
g4_t£3);

g4_tf4 = excludedata(gd_Fv',abs(g4_Fty(gé4_Iv,1))=*2*x10~(1/10),
"domain', [380 400]);

g4_funfourthfit = fit( g4_Fv',
abs (g4 _Fty(g4_Iv,1))*2%x10~(1/5),
'gaussl',
"Exclude',
gd_tf4);

g4_Fv= linspace (0 ,1, fix(g4_L/2)+1)*g4_Fn;

g4_Iv = 1:numel(g4_Fv);
plot (g4_Fv, abs(g4_Fty(gd_Iv,:))*2)
x1im ([380 400])
xticks (380:5:400)
xlabel ('Frequency (hz)"')
ylabel ('Amplitude')
title ('G4 Frequency: First Harmonic')
hold on
plot (g4_funfirstfit, 'r')
plot (g4_funsecondfit, 'b')
plot (g4_funthirdfit, 'g')
plot (g4_funfourthfit, 'm')

g4_funthirdfit
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g4_tf5 = excludedata(g4_Fv',abs(gé4_Fty(gd_Iv,1))
*2%x10~(1/5), "domain' ,[775 790]) ;

g4_harm2firstfit = fit( gd4_Fv',
abs (g4 _Fty(g4_Iv,1))*2%x10~(1/5),
'gaussl',
"Exclude',
g4_t£5);

g4_tf6 = excludedata(g4_Fv',abs(gd4_Fty(gd_Iv,1))
x2x10°(7/24) ,
"domain' , [775 790]) ;

g4_harm2secondfit = fit( g4_Fv',
abs (g4 _Fty(gd_Iv,1))*2x10~(7/24),
'gaussl',
"Exclude',
gd_t£f6);

g4_tf7 = excludedata(gd _Fv',abs(gé4_Fty(gé4_Iv,1))
*2*x10°(1/3),
"domain', [775 790]) ;

g4_harm2thirdfit = fit( gd4_Fv',
abs (g4 _Fty(gd_Iv,1))*2x10~(1/3),
'gaussl’',
"Exclude',
gh_t£f7);

g4 _Fv= linspace (0 ,1, fix(g4_L/2)+1)*gd_Fn;

g4_Iv = 1:numel(g4_Fv);

plot (g4_Fv, abs(g4_Fty(g4_Iv,:))*2)
x1im ([775 7901)
xticks (7756:5:790)
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xlabel ('Frequency (hz)')
ylabel ('Amplitude')
title ('G4 Frequency: Second Harmonic')
hold on
plot (g4_harm2firstfit, 'r')
plot (g4_harm2secondfit, 'b')
plot (g4_harm2thirdfit, 'm')

g4_harm2firstfit

gd_tf8 = excludedata(gd4_Fv',abs(g4_Fty(g4_Iv,1))*2%x10~(1/5),
"domain',[1160 1190]);

g4_harm3firstfit = fit( gd4_Fv',
abs (g4 _Fty(gd_Iv,1))*2x10~(1/5),
'gaussl',
"Exclude',
g4_t£8);

g4_tf9 = excludedata(gd_Fv',abs(gé4_Fty(gé_Iv,1))*2*x10~(1/6),
"domain',[1160 1190]);

g4_harm3secondfit = fit( g4_Fv',
abs (g4 _Fty(gd_Iv,1))*2%x10~(1/6),
'gaussl',
"Exclude',
gd_t£f9);

gd_tf10 = excludedata(gé4_Fv',abs(g4_Fty(gd_Iv,1))*2%x10~(1/10),
"domain',[1160 1190]);
g4 _harm3thirdfit = fit( g4_Fv',
abs (g4_Fty(g4_Iv,1))*2%10~(1/10),

'gaussl',
"Exclude',
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gd_t£10);

g4_Fv= linspace (0 ,1, fix(g4_L/2)+1)*gd_Fn;

g4_Iv = 1:numel(g4_Fv);
plot (g4_Fv, abs(g4_Fty(gd_Iv,:))*2)
x1lim ([1160 1190])
xticks (1160:5:1190)
xlabel ('Frequency (hz)')
ylabel ('Amplitude')
title ('G4 Frequency: Third Harmonic')
hold on
plot (g4_harm3firstfit, 'r')
plot (g4_harm3secondfit, 'b')
plot(g4_harm3thirdfit, 'm')

g4 _harm3firstfit

gd_tfll = excludedata(g4_Fv',abs(g4_Fty(gé4_Iv,1))*2x10~(1/6),
"domain',[1555 1575]);

g4_harm4firstfit = fit( gd_Fv',
abs (g4 _Fty(g4_Iv,1))*2%x10~(1/6),
'gaussl',
"Exclude',
gd_tfl1);

gd_tf12 = excludedata(g4_Fv',abs(gd_Fty(gd_Iv,1))*2%x10~(1/10),
"domain',[1555 1575]);

g4_harmdsecondfit = fit( g4_Fv',
abs (g4 _Fty(g4_Iv,1))*2%x10~(1/10),
'gaussl',
"Exclude',
gd_tf12);
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g4_tf13 = excludedata(g4_Fv',abs(gé4_Fty(gd4_Iv,1))*2%x10~(3/40),
"domain',[1555 1575]);

g4_harm4thirdfit = fit( gd_Fv',
abs (g4_Fty(g4_Iv,1))=*2%10"(3/40),
'gaussl',
"Exclude',
gd_t£f13);

gd_tfl4d = excludedata(gé4_Fv',abs(gd_Fty(gd_Iv,1))*2%x10~(1/8),
"domain' ,[1555 1575]) ;

g4_harm4fourthfit = fit( g4_Fv',
abs (g4 _Fty(gd_Iv,1))*2x10~(1/8),
'gaussl',
"Exclude',
gd_tf14);

gd_tf1l5 = excludedata(g4_Fv',abs(g4_Fty(gd_Iv,1))*2%x10~(27/200)

"domain' ,[1555 1575]) ;

g4_harm4fifthfit = fit( g4_Fv',
abs (g4_Fty(g4_Iv,1))*2x10~(27/200),
'gaussl’',
"Exclude',
gd_tf15);

g4_Fv= linspace (0 ,1, fix(g4_L/2)+1)*g4_Fn;

g4_Iv = 1:numel(g4_Fv);
plot (g4_Fv, abs(g4_Fty(gd_Iv,:))*2)
x1im ([1555 1575])
xticks (1555:5:1575)
xlabel ('Frequency (hz)"')
ylabel ('Amplitude')
title ('G4 Frequency: Fourth Harmonic')
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hold on

plot (g4_harmd4firstfit, 'r')
plot (g4_harmé4secondfit, 'b')
plot(g4_harm4thirdfit, 'm')
plot (g4_harmé4fourthfit, 'g')
plot (g4 _harm4fifthfit, 'y')

g4_harmd4fifthfit

1:4800 *20;
n/48000;

g4_n
gd_t

gd_f1 = 2*pi * 391.6 ;
gd_£f2 = 2xpi x 782.5;
gd_£3 = 2xpi * 1176;
gd_f4 = 2xpi * 1565;

g4_sound = 0.006801*sin(g4_fl*xgd_ t) + 0.00221xsin(gd_£f2xgd_t) +
0.000576*sin(gd_f3*gd_t) + 0.0004165*xsin(gd_fidxgd_t);

sr = 48000
gd_s=2
g4_t= linspace(0,g4_s,sr*xgd_s);
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.3 Coding Song Appendix

clear;

Bb_n = 1:4800%*25;
t = Bb_n/48000;

Bb5_f1 = 2%pi * 932;
Bb5_f2 = 2%pi * 1863 ;

Bb5_f3 = 2%pi * 2795 ;

Bb5_f4 = 2%pi * 3725;

BbSsound = 0.006052*sin(Bb5_f1%t) + 0.0007924*sin(Bb5_f2xt) +

0.0008232xsin(Bb5_f3*t) + 0.0001116*sin(Bb5_f4x*t);

sr = 48000;
s=2.5;
t= linspace(0,s,sr*s);

Bb5_player=audioplayer (Bbb5sound, sr)
playblocking (Bb5_player)

1:4800 *x 1;
a5_n/48000;

ab_n
ab_t

ab_f1l = 2xpi *x 879.9 ;

ab_f2 = 2%xpi * 1760;

ab_f3 = 2xpi * 2637;

ab_f4 = 2x*xpi * 3217;

ab_sound = 0.004759 *sin(ab_f1l*xab5_t) + 0.0009626*sin(a5_f2*ab5_t) +

0.0004288 *sin(ab_f3*ab_t) + 0.0001225*sin(ab_f4*ab_t);

sr = 48000;
ab_s=0.5;
ab5_t= linspace(0,ab5_s,sr*xab_s);
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A5_player = audioplayer (a5_sound ,48000)
playblocking (A5_player)

B5_n
B5_t

1:4800 * 1;
B5_n/48000;

B5_f1 = 2%pi * 987.7;

B5_f2 = 2%pi * 1975 ;

B5_f3 = 2%pi % 2962 ;

B5_f4 = 2%pi * 3948 ;

BS5sound =  0.004095 #sin(B5_f1*B5_t) + 0.001237*sin(B5_f2%B5_t) +

0.0002443*sin(B5_f3*B5_t) + 0.0001004*sin(B5_f4%*B5_t);

sr = 48000;
s=0.5;
B5_t= linspace(0,s,sr*s);

B5_player= audioplayer (B5sound, 48000)
playblocking (B5_player)

abb_n
abb_t

1:4800 =*25;
ab5_n/48000;

ab5_f1 = 2*xpi *x 830.6;

abb_f2 = 2xpi * 1661;

ab5_f3 = 2%pi * 2492;

abb5_f4 = 2*xpi * 3325;

ab5_sound = 0.005242 *xsin(ab5_fl1*ab5_t) + 0.001131 =*sin(ab5_f2*ab5_t

) +
0.0009889*sin(ab5_f3*ab5_t) + 0.0002183 =*sin(abb5_f4*ab5_t);
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sr = 48000;
s=2.5;
ab5_t= linspace(0,s,sr*s);

ab5_player = audioplayer (ab5_sound ,48000)
playblocking (ab5_player)

gb_n
go_t

1:4800 * 1;
g5_n/48000;

gb_f1 = 2xpi * 784.6 ;
gbh_f2 = 2%pi * 1569 ;
gb_£f3 = 2%pi *x 2353;
gb_f4 = 2xpi *x 3137 ;

gb_sound = 0.005719*sin(gb_fl*xgb_t) + 0.001078 *sin(gb_f2*gh_t) +
0.0009398*sin(gb_f3*gh_t) + 9.555e-05*sin(ghb_f4*gh_t);

sr = 48000;

s=0.5;

gb_t= linspace(0,s,sr*s);

gb_player = audioplayer (gb_sound ,48000)
playblocking (gb_player)

ab_n
ab_t

1:4800 * 1;
a5_n/48000;

ab_f1 = 2%pi *x 879.9 ;
ab_f2 = 2xpi *x 1760;
ab_f3 = 2%xpi * 2637;
ab_f4 = 2x%pi * 3217;
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ab_sound = 0.004759 x*xsin(ab_f1l*xab_t) + 0.0009626*sin(ab_f2*ab_t) +

0.0004288 *xsin(ab_f3*ab5_t) + 0.0001225*xsin(ab_f4*ab_t);

sr = 48000;
ab_s=0.5;
ab_t= linspace(0,ab_s,sr*ab_s);

A5_player = audioplayer (ab_sound ,48000)
playblocking (A5_player)

1:4800 *10;
gh5_n/48000;

gbb_n
gbb_t

gb5_f1 = 2%pi * 740.1 ;
gb5_f2 = 2xpi * 1480 ;
gb5_f3 = 2%pi * 2220;
gb5_f4 = 2xpi * 2962;

gb5_sound = 0.002933*sin(gb5_f1*gb5_t) + 0.002711*sin(gb5_f2*xgb5_t) +
0.00159*sin(gb5_£f3*gb5_t) + 0.000214*sin(gb5_f4*gb5_t);
sr = 48000;

s=1;
gb5_t= linspace(0,s,sr*s);

gb5_player = audioplayer (gb5_sound ,48000)
playblocking (gb5_player)

F5_n
F5_t

1:4800 *10;
F5_n/48000;
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F6_f1 = 2%pi *x 698 ;
F5_f2 = 2%pi *x 1396;
F5_£f3 = 2xpi *x 2094 ;
F6_f4 = 2xpi * 2798;

F5_sound = 0.004752 *xsin(F5_f1*F5_t) + 0.001933 *sin(F5_f2*F5_t) +
0.002127 *sin(F5_f3*F5_t) + 4.141e-05*sin(F5_f4*F5_t);

sr = 48000;

s=1;

F5_t= linspace(0,s,sr*s);

f5_player = audioplayer (F5_sound, 48000)
playblocking (f5_player)

E5_n = 1:4800 =*10;
E55_t E5_n/48000;

E5_f1 = 2%pi * 658.9 ;
ES_f2 = 2%pi * 1319;
E5_f3 = 2%pi * 1978
E6_f4 = 2%pi * 2639;

E5_sound = 0.006278 *sin(E5_f1*E55_t) + 0.001277 +*sin(E5_f2*E55_t) +

0.001458 *sin(E5_f3*E55_t) + 0.000107*sin(E5_f4*E55_t);

sr = 48000;
s=1;
E55_t= linspace(0,s,sr*xs);

E5_player = audioplayer (E5_sound, 48000)
playblocking (E6_player)
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Db5_n
Db5_t

1:4800 =*10;
Db5_n/48000;

Db5_f1 = 2%pi * 554 ;
Db5_f2 = 2%pi * 1108 ;
Db5_£3 = 2%pi * 1660 ;
Db5_f4 = 2%pi * 2215

Db5_sound = 0.007707*sin(Db5_f1*Db5_t) + 0.001013*sin(Db5_£f2*Db5_t) +

0.0005376*sin(Db5_£3*Db5_t) + 0.0001168*sin(Db5_£f4*Db5_t) ;

sr = 48000;
s=1;
Db5_t= linspace(0,s,sr*xs);

Db5_player = audioplayer (Db5_sound, 48000)
playblocking (Db5_player)

Bb_n = 1:4800%20;
t = Bb_n/48000;

Bb5_f1 = 2%pi * 932;

Bb5_f2 = 2%pi * 1863 ;

Bb5_f3 = 2%pi * 2795 ;

Bb5_f4 = 2%pi * 3725;

BbSsound =  0.006052*sin(Bb5_f1xt) + 0.0007924*sin(Bb5_f2xt) +

0.0008232*sin(Bb5_£f3*t) + 0.0001116*sin(Bb5_f4x*t);

sr = 48000;
s=2;
t= linspace(0,s,srxs);

Bb5_player=audioplayer (Bb5sound, sr)
playblocking (Bb5_player)
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C6_n = 1:4800 * 1 ;
c6t = C6_n/48000;

C6_f1 = 2x*pi * 1046 ;

C6_f2 = 2%xpi *x 2095 ;

C6_f3 = 2*pi * 3137 ;

C6_f4 = 2xpi * 4182 ;

C6_sound = 0.009939 *sin(C6_f1lxc6t) + 0.001487*sin(C6_f2*xc6t) +

0.0003361*xsin(C6_£f3*c6t) + 0.0001857 *sin(C6_f4d*c6t);

sr = 48000;
s=0.5;
c6t= linspace(0,s,sr*s);

C6_player = audioplayer (C6_sound, 48000)
playblocking (C6_player)

B5_n
B5_t

1:4800 * 1;
B5_n/48000;

B5_f1 = 2%pi * 987.7;
B5_f2 = 2%pi * 1975 ;

B5_f3 = 2%pi * 2962 ;

B5_f4 = 2%pi * 3948 ;

B5sound = 0.004095 *sin(B5_f1%B5_t) + 0.001237+sin(B5_f2*B5_t) +

0.0002443*sin(B5_f3*B5_t) + 0.0001004*sin(B5_£f4*B5_t);

sr = 48000;
= 0.5
_t=

B5 linspace(0,s,sr*xs);
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B5_player= audioplayer (B5sound, 48000)
playblocking (B5_player)

Bb_n = 1:4800%*40;
t = Bb_n/48000;

Bb5_f1 = 2%pi * 932;

Bb5_f2 = 2%pi * 1863 ;

Bb5_£3 = 2%pi * 2795 ;

Bb5_f4 = 2%pi * 3725;

BbSsound = 0.006052*sin(Bb5_f1xt) + 0.0007924*sin(Bb5_f2xt) +

0.0008232*sin(Bb5_f3xt) + 0.0001116*xsin(Bb5_f4x*t);

sr = 48000;
t= linspace(0,s,sr*s);

Bb5_player=audioplayer (Bb5sound, sr)
playblocking (Bb5_player)

Bb_n = 1:4800%*25;
t = Bb_n/48000;

Bb5_f1
Bb5_f2

2%pi * 932;
2xpi * 1863 ;
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Bb5_£3
Bb5_f4

2%pi * 2795 ;
2xpi * 3725;

Bbb5sound = 0.006052*sin(Bb5_f1*t) + 0.0007924*sin(Bb5_f2x*t) +
0.0008232*xsin(Bb5_£f3*t) + 0.0001116*sin(Bb5_f4x*t);

sr = 48000;
s=2.5;
t= linspace(0,s,sr*s);

Bb5_player=audioplayer (Bb5sound,sr)
playblocking (Bb5_player)

1:4800 * 1;
a5_n/48000;

ab_n
ab_t

ab_f1l = 2xpi *x 879.9 ;

ab_f2 = 2%xpi * 1760;

ab_f3 = 2xpi *x 2637;

ab_f4 = 2xpi * 3217;

ab5_sound = 0.004759 *sin(ab5_f1*a5_t) + 0.0009626*sin(a5_f2*ab_t) +

0.0004288 *sin(ab_f3xab_t) + 0.0001225*sin(ab_f4*ab_t);

sr = 48000;
ab_s=0.5;
ab_t= linspace(0,ab_s,sr*xab_s);

A5_player = audioplayer (a5_sound ,48000)
playblocking (A5_player)

B5_n
B5_t

1:4800 * 1;
B5_n/48000;
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B5_f1 = 2%pi * 987.7;

B5_f2 = 2%pi * 1975 ;

B5_f3 = 2%pi * 2962 ;

B5_f4 = 2%pi * 3948 ;

B5sound =  0.004095 *sin(B5_f1%B5_t) + 0.001237+sin(B5_f2*B5_t) +

0.0002443*sin(B5_f3*B5_t) + 0.0001004*sin(B5_£f4*B5_t);

sr = 48000;
s=0.5;
B5_t= linspace(0,s,sr*s);

B5_player= audioplayer (B5sound, 48000)

playblocking (B5_player)

abb_n
abb_t

1:4800 x*25;
ab5_n/48000;

abb_f1 = 2*pi * 830.6;
abb5_f2 = 2%pi * 1661;
abb5_£f3 = 2*xpi * 2492;
abb_f4 = 2xpi * 3325;
ab5_sound = 0.005242 *sin(ab5_fl*ab5_t) + 0.001131 *sin(ab5_f2*ab5_t

) +
0.0009889*xsin(ab5_f3*ab5_t) + 0.0002183 *sin(ab5_f4*ab5_t);

sr = 48000;
s=2.5;
ab5_t= linspace(0,s,sr*s);

ab5_player = audioplayer (ab5_sound ,48000)
playblocking (ab5_player)
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gb_n
gbh_t

1:4800 x*1;
g5_n/48000;

gb_f1l = 2xpi *x 784.6 ;
gh_f2 = 2*xpi * 1569 ;
gb_£f3 = 2xpi * 2353;
gb_f4 = 2xpi *x 3137 ;

gb_sound = 0.005719*sin(gb_fl*gh_t) + 0.001078 *sin(gb_f2*xgb_t) +
0.0009398*sin(gb_£f3*gh_t) + 9.555e-0565*sin(gb_f4xgb_t);

sr = 48000;

s=0.5;

gb_t= linspace(0,s,sr*s);

gb_player = audioplayer (gh_sound ,48000)
playblocking (gb_player)

1:4800 =*1;
a5_n/48000;

ab_n
ab_t

ab_f1l = 2xpi *x 879.9 ;

ab_f2 = 2%xpi * 1760;

ab_f3 = 2xpi *x 2637;

ab_f4 = 2xpi * 3217;

ab5_sound = 0.004759 *sin(ab5_f1*a5_t) + 0.0009626*sin(a5_f2*ab_t) +

0.0004288 *sin(ab_f3xab_t) + 0.0001225*sin(ab_f4*ab_t);

sr = 48000;
ab_s=0.5;
ab_t= linspace(0,ab5_s,sr*xab_s);
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A5_player = audioplayer (a5_sound ,48000)
playblocking (A5_player)

gb5_n
gbb_t

1:4800 * 5;
gb5_n/48000;

gbb5_f1 = 2xpi * 740.1
gb5_£f2 = 2xpi *x 1480 ;
gbb5_£f3 = 2xpi *x 2220;
gb5_f4 = 2*pi * 2962;

gb5_sound = 0.002933*sin(gb5_fl*gb5_t) + 0.002711*sin(gb5_f2*gb5_t) +
0.00159*sin(gb5_£f3*gb5_t) + 0.000214*sin(gb5_f4*gb5_t);
sr = 48000;

s=1;
gb5_t= linspace(0,s,srxs);

gbb5_player = audioplayer (gb5_sound ,48000)
playblocking (gb5_player)

F5_n
F5_¢t

1:4800 *x 7.5;
F5_n/48000;

F5_f1 = 2*xpi * 698 ;
F5_f2 = 2*xpi x 1396;
F5_£f3 = 2%pi *x 2094 ;
F5_f4 = 2xpi x 2798;

F5_sound = 0.004752 *sin(F5_f1*F5_t) + 0.001933 *sin(F5_f2*F5_t) +

0.002127 *sin(F5_f3*F5_t) + 4.141e-05*sin(F5_f4*F5_t);
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sr = 48000;
s=1;
F5_t= linspace(0,s,sr*s);

f5_player = audioplayer (F5_sound, 48000)
playblocking (f5_player)

ES5_n = 1:4800 * 7.5;
E55_t E5_n/48000;

E5_f1 = 2%pi * 658.9 ;
E5_f2 = 2%pi % 1319;
E5_f3 = 2%pi * 1978 ;
E5_f4 = 2%pi * 2639;

E5_sound = 0.006278 *sin(E5_f1*E55_t) + 0.001277 *sin(E5_f2xE55_t) +
0.001458 *xsin(E5_f3*E55_t) + 0.000107*sin(E5_f4*E55_t);
sr = 48000;

s=1;
E55_t= linspace(0,s,sr*s);

E5_player = audioplayer (E6_sound, 48000)
playblocking (E6_player)

Db5_n
Dbb_t

1:4800 *7.5;
Db5_n/48000;

Db5_f1 = 2%pi * 554 ;
Db5_f2 = 2%pi * 1108 ;
Db5_f3 = 2%pi * 1660 ;
Db5_f4 = 2%pi * 2215
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Db5_sound = 0.007707*sin(Db5_f1*Db5_t) + 0.001013*sin(Db5_f2*Db5_t) +
0.0005376*sin(Db5_£f3*Db5_t) + 0.0001168*sin(Db5_f4*Db5_t) ;

sr = 48000;

s=1;

Db5_t= linspace(0,s,sr*s);

Db5_player = audioplayer (Db5_sound, 48000)
playblocking (Db5_player)

Bb4_n
Bbd_t

1:4800 * 25;
Bb4_n/48000;

Bb4_f1 = 2xpi * 466.2 ;
Bb4_f2 = 2xpi * 932.2 ;
Bb4_£f3 = 2xpi * 1399;
Bb4_f4 = 2x*xpi * 1865;

Bb4_sound = 0.009049*sin(Bb4_f1*Bb4_t) + 0.001457*sin(Bb4_£f2xBb4_t) +
0.0005945*xsin(Bb4_£f3*xBb4_t) + 0.0007095*sin(Bb4_£f4*xBb4_t);

sr = 48000;
s=2.5;
Bb4_t= linspace(0,s,sr*xs);

Bb4_player = audioplayer (Bb4_sound, 48000)
playblocking (Bb4_player)

gb4_n = 1:4800 * 1;
ghb4_t = gb4_n/48000;
gb4d_f1 = 2*pi * 369.7 ;
gb4_£f2 = 2xpi * 739.5
gb4_£f3 = 2xpi * 1109;
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gb4_f4 = 2xpi * 1480 ;

gb4_sound = 0.005153 *sin(gb4_flxgb4_t) + 0.003346%sin(gb4_f2+gb4_t)
+

0.001624*sin(gb4_f3*gb4_t) + 0.0001257+sin(gb4_fi*gb4_t);

sr = 48000;
s=0.5;
gb4_t= linspace(0,s,sr*s);

gb4_player = audioplayer (gb4_sound ,48000)
playblocking (gb4_player)

g4_n

gd_t

1:4800 * 1;
g4_n/48000;

gd_f1 = 2%pi * 391.6 ;
gd_f2 = 2*xpi * 782.5;
g4_£3 = 2xpi *x 1176;
g4_f4 = 2xpi * 1565;

g4_sound = 0.006801*sin(gd_fl*gd_t) + 0.00221xsin(gd_£f2*xgd_t) +
0.000576%sin(g4_f£3*g4_t) + 0.0004165*sin(gd_fd*gd_t);

sr = 48000
g4d_s= 0.5
g4_t= linspace(0,gé4_s,sr*xgd_s);

g4_player = audioplayer(g4_sound, 48000)
playblocking (g4_player)

n = 1:4800 =*10;

t = n/48000;

b4_f1 = 2*xpi * 493.8 ;
b4_f2 = 2xpi * 988.5
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b4_£3
b4_£f4

2xpi * 1481 ;
2%pi * 1973;

b4_sound = 0.0011*xsin(b4_f1xt) + 0.0003437xsin(b4_£f2x*t) +
0.0006619*sin(b4_£3*t) + 0.0005551*sin(b4d_£f4x*t);

sr = 48000;
t= linspace(0,s,sr*s);
b4_player = audioplayer(b4_sound, 48000)

playblocking (b4_player)

linel =[Bbbsound,ab_sound,Bbsound,ab5_sound,gb_sound, ab_sound,

gb5_sound,
F5_sound, E5_sound, Dbb5_sound, Bbbsound, C6_sound,Bbsound,
Bb5sound];
line2 = [Bbb5sound,ab_sound,Bb5sound,ab5_sound,gb_sound, ab_sound,
gb5_sound,
F5_sound, E5_sound, Db5_sound, Bb4_sound, gb4_sound, g4_sound,
b4_sound];

song=[1linel, line2];
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Fractals: Koch Snowflake and Snowflake Sweep

3a: four stages in the construction of the Koch snowflake

3b: four stages in the construction of a snowflake sweep

3c: rounded approximations of 3a and 3b, superposed
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Framing Reality through the Lens of Creative Mediums

Mackenzi Mehlberg

May 20, 2023



Context

Through this we are examining the what it means to be human by examining how humans are able
to experience the world through creative mediums. As a panel, we explored the effects of immersive
art and how sensory beauty impacts the creation of human experiences. Furthermore, panelists

analyze the framework of beauty to better understand how humans perceive meaning.

Introduction

Thank you for coming to our panel.

I am here both as a musician and as a mathematician.

As a musician, I am trained to use music to entertain My role is to connect the audience to

different emotions and various stories. Ultimately, my role is to bring beauty into the world.

As a mathematician, I am trained to use logic and reasoning to solve problems. My role is to

connect complex ideas and singular solutions. Ultimately, my role is to provide insight.

Why do we view music as beautiful, but not mathematics?

Behind me, you see Claude Debussy’s, famous flute piece, Syrinz. In the flute world, this is
renowned as a beautiful piece of musical literature. It is known for its narrative storytelling of the

Greek legend regarding Syrinx and Pan and for its mesmerizing melodies. .

For this project, I recreated the first two measures of this piece by decomposing sound into
mathematical equations. Let me play this for you.

Before, we dive deeper in, let me play for you a musical interpretation.

While, I am playing my musical interpretation for you, observe the code behind me. Realize

that this is a mathematical representation of what I am playing.



Math Context Vocabulary

I have just played my musical interpretation of this mathematical composition.
Now, Let’s define some math vocab.

I will be talking about these three main ideas: Frequency, Harmonics, and Amplitude:

a. First is Frequency. Frequency is the number of times a sound wave repeats over a period of

time.

b. Second is Harmonics. Let’s consider one note. As it plays, think of one knot being ties into
one piece of rope. This is called our first harmonic. We can tie a smaller second knot. This
is our second harmonic. Theoretically we can tie an infinite amount of knots, but who wants
to? I don’t. On flute, there are 9 playable harmonics, or knots,. In this project, I limited
our harmonics to 4 because there were 15 notes. In terms our our knot analogy, I have 15

disconnected pieces of rope with 4 notes in each piece.

c. Lastly is Amplitude. Amplitude is how loud or soft the music is. We measure amplitude from

the peaks and valleys of sound waves.

Now that we have defined frequency, harmonics and amplitude, let’s explore this means.
Using a branch of mathematics called Fourier Analysis, we are able to use a technique called

Fourier Transform to graph each note via their frequencies and amplitudes.

Math Modelling Go!

We learned the key math concepts, so let’s run through the process in which I created my mathe-
matical composition.

In the scope of this project, I looked at the first two measures of Syrinz, and counted 15 different
notes. Next, I recorded myself playing each note in Pro Tools, an audio software tool. I played each
note for about 4 seconds, and ended up with 15 sound files. Each sound file represents one note of

the piece.



After I gathered my sound files, I imported them in a computer program called MATlab. Matlab
is designed for sound analysis which sounds perfect for us.

After importing the sound files into Matlab, I used Fourier Transform, to find Fourier coefficients.
These Fourier coefficients are used to specify the amplitudes of our sound waves.

Recall that, one note has 4 harmonics. So for one note, we are finding the 4 separate coefficients
for each of the harmonics. We now repeat this process for the other notes. Since we had 15 notes
with each note having 4 harmonics, we found 60 unique Fourier Coeflicients.

What we have now are our frequencies and amplitudes but no record of the duration of each
note. So I added time to my frequency and amplitude graph to change the duration of my notes. I
either increased the time interval if I wanted the note to be longer, or decreased it if I wanted the
note to ve shorter. Here, I have now created a sense of rhythm.

Time was my missing component in creating the equation, but since we have it, able to begin
the process of recreating the sound. First we created an equation of each note, composed of the sum
of the 4 harmonics with each harmonic being multiplied by its unique Fourier Coefficient. Then
using Matlab, I coded a way for the program to take my equation and play the sound. Resulting
in the sound for each note. Afterwards, I take the code for each note and order it, based off how it
appears in the piece. Then I adjusted the time interval to create a sense of rhythm. We have now

just created my mathematical composition of Syrinz.

Glimpse Mathematical Beauty

Now, back to original question: why is music considered beautiful but mathematics is not?
Especially when music can be written in terms of mathematics.
To get us thinking more about mathematical beauty, I quote G.H Hardy,
"It may be very hard to define mathematical beauty, but that is just as true of beauty of any

kind- we may not quite know what we mean by a beautiful poem but does that not prevent us from

recognizing one when we read it?"



With this in mind, I now present the Webster definition of beauty.

Beauty is the quality or aggregate of qualities in a person or thing that gives pleasure to the
senses or pleasurably exalts the mind or spirit.

Instinctively, we think of music. We think of how music makes us but we hardly think about
how math makes us feel. If we do, it is usually in a negative context. Thus, let us reframe beauty
in the context of mathematics

"Exalting the mind and spirit" applies directly to mathematics. We exalt the mind, with complex
ideas, and challenging problems. We strive to connect ideas and solutions. We as mathematicians

crave meaning out of the theorems we prove.

A famous example includes Euclid’s Proof of the Infinitude of Primes, which states that given
any collection of prime numbers there is at least one prime number that is not part of this collection.
In mathematics, this is beautiful for two reasons: for the idea it conveys and how elegant and simple
the proof is.

A huge appeal of mathematical beauty is the idea of being able to reason and bring insight
about complex ideas.

But you ask, "What if someone’s taste is different than what society deems as beautiful? "

Objectivism and Subjectivity

This question leads us to two different ways to aesthetically define beauty. These two ways are

Aesthetic Subjectivity and Aesthetic Objectivity.

a. Aesthetic Subjectivism is the belief that aesthetic judgements such as beauty are not facts
but rely on the observer. This is essentially the argument that beauty is in the eye of the

beholder

If this were truly the case, this would mean that a toddler’s finger painting would be more
beautiful than the Mona Lisa. I don’t mean to offend any parents in the room, but we can
all agree that regardless of parental sentimental value the Mona Lisa is objectively a better

painting, majority considered to be a masterpiece of the art world.



This bring us to the another way of aesthetically defining beauty:

b. Aesthetic Objectivity. This is the belief that aesthetic qualities are properties of objects that

are independent of an observer’s awareness.
Both subjectivity and objectivity play a vital role in the human’s perspective of beauty.

When sharing this topic of mathematical beauty to others, I constantly hear people belittle

math.

"It’s too hard"
Good for you, I can never do that.

Bless your soul

To this, I respond with quote from Imannuel Kant’s Critique of Judgement. "the judgement of
taste is subjective." Meaning that mathematical beauty still exists regardless whether society

deems it as beautiful or not.

Frameworks of Beauty

Then, let us discuss the why mathematics is beautiful.
Francis Su discusses the 4 main types of beauty: sensory, wondorous, insightful, and transcen-

dent.

a. First is Sensory beauty. This is the beauty that deals with the senses: sight, touch, taste,

smell, and sound.

In math, sensory beauty present itself in nature and art.

In nature, mathematics is present through patterns. The famous example is the Fibonacci
sequence. This sequence originates from how rabbits reproduced given that each pair has one
male and one female. This one question resulted in seeing this pattern everywhere in nature.
It is seen on the seeds of sunflowers, caulifiower, and pine-cones. Futhermore, it is seen storms

and how they spiral and move. Even the human body follows this pattern. With our 1 nose,



2 eyes, 3 segemts to each limb and 5 fingers. Mathematics is seeing and applying patterns in

different contexts.

In art, mathematics is presented in the creation of parallel lines in artwork. In the Last
Supper, the parallel lines on the ceiling are constructed by created an intersection point at

infinity. This gives us the illusion of parallel when they don’t look like it.

Specifically in this project, we appeal to sensory beauty of math through sight and sound. We

can see the physical representation of our equations, and we can also hear them.

. Next, is Wondorous Beauty. Wondorous Beauty is being awed and curious about some-

thing.

Generally in math, we are constantly curious about the world. We pose questions by limiting

our assumptions and to see what happens next.

In this project, we can subscribe this to sparking one’s curiosity. Throughout this project,
there were many quesiions with one common theme: a way to solve new problems. This was
a constant throughout the entire process of creating a computer generated sound modelling

music. Additionally, the idea allows us as humans to continue to become lifelong learners.

Sensory Beauty relates to Wondrous Beauty because it can spark our curiosity, but both forms
of beauty are independent types of beauty. Both forms of beauty can lead to insightful

beauty.

. insightful beauty is the beauty of how we understand the world based off the insights we
gather. This type of beauty is where the stereotype of mathematics as being cold and devoid

of emotion originates because this beauty focuses on the art of understanding through reason.
In math, insightful beauty is constantly applied.

To figure out seating for 16 people using trapezoidal desks, totally not applicable to me. To
figuring out the least amount of pizza to order to feed enough people. To understanding the

mathematics behind physics, engineering. To know how to to safely build bridges, roads,



desks, chairs. To analyze trends in data to gleam insights. Note that, insights can be instan-

taneous but also insights can also happen over time.

Furthermore insightful beauty in mathematics is best exemplified through the art of proof.
As a mathematician, we try to create the simplest and most insightful proofs to truly under-

standing the mechanics of the world.

This is the power to communicate ideas effectively.

During this project, there were obstacles to overcome:

a. Learning a new coding language

o

. creating code to find coefficients

. defining on what the best model is

O

d. how to create rhythm using code

e. Understanding a new higher level math such as Fourier Analysis

To say the least, I struggled. These were all new skills I wanted and needed to learn. We
learn these skills only through preserving through the struggle. We continued because it was

fun to think about different results and implications.

. Ultimately these results lead to some sort of greater truth. This is transcedent beauty.
This is the beauty that moves from a specific object, idea, or result to a greater truth about

the world.

In math, this is the connection of our ideas and theorems to get a better understanding of the
universe. It relates us to a truth greater than ourselves. Usually seen through the abstract
ideas regarding infinity and zero, but also in ground-breaking research. This ground-breaking
research are ideas that change our perspective on the world. Examples include law of gravity,
the theory of spatial relativity, the Pythagorean Theorem, Euclid’s Infinitude of Primes, and

many maore.



Conclusion

Specifically mathematical transcendental beauty is recognizing that math is a different per-
spective of observing and learning about the world. To be truly human, a person must have

the ability to understand and percieve beauty in different contexts.

In modern society, There is an emphasis on thinking logically which results in an emphasis
on STEM fields. But reflecting, critical thinking and empathy are all vital aspects of being
human. Without English or History, we are unable to to learn from mistake from history or to
relate to characters. In more applicable terms: to learn our own past mistakes, and to relate

to other people.

Sterotyping different aspects of knowledge reduces our ability to be human. Because our hu-

manity is in the intersection of knowledge surrounding STEM and Humanities.

This project exemplifies the commonalities between math and music to relate the beauty of
math to people who do not find math beautiful. To find math beautiful is the Resistance

against one common definition of beauty.

I strongly urge you all, to no discredit other perspectives of beauty. To truly humble ourselves
to learning more. As a society, if we solely decide on one form of beauty, we have done our-

selves an injustice. Because we have lost a significant understanding of our universe.

English is Beautiful.
Horror is Beautiful
Video Games are Beautiful.

Mathematics is Beautiful.

Thank you.
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