
Seattle Pacific University Seattle Pacific University

Digital Commons @ SPU Digital Commons @ SPU

Honors Projects University Scholars

Spring 5-31-2024

A Survey of Practical Haskell: Parsing, Interpreting, and Testing A Survey of Practical Haskell: Parsing, Interpreting, and Testing

Parker Landon
Seattle Pacific University

Follow this and additional works at: https://digitalcommons.spu.edu/honorsprojects

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Recommended Citation Recommended Citation
Landon, Parker, "A Survey of Practical Haskell: Parsing, Interpreting, and Testing" (2024). Honors Projects.
218.
https://digitalcommons.spu.edu/honorsprojects/218

This Honors Project is brought to you for free and open access by the University Scholars at Digital Commons @
SPU. It has been accepted for inclusion in Honors Projects by an authorized administrator of Digital Commons @
SPU.

http://digitalcommons.spu.edu/
http://digitalcommons.spu.edu/
https://digitalcommons.spu.edu/
https://digitalcommons.spu.edu/honorsprojects
https://digitalcommons.spu.edu/univ-scholars
https://digitalcommons.spu.edu/honorsprojects?utm_source=digitalcommons.spu.edu%2Fhonorsprojects%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.spu.edu%2Fhonorsprojects%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.spu.edu%2Fhonorsprojects%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.spu.edu%2Fhonorsprojects%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.spu.edu/honorsprojects/218?utm_source=digitalcommons.spu.edu%2Fhonorsprojects%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages

A Survey of Practical Haskell: Parsing, Interpreting, and Testing

By

Parker Landon

Faculty Mentors

Dr. Carlos R. Arias, Department of Computer Science, Seattle Pacific University

Honors Program Director

Dr. Joshua Tom

A project submitted in partial fulfillment of the requirements
for the Bachelor of Arts degree in Honors Liberal Arts

Seattle Pacific University
2024

Presented at the SPU Honors Research Symposium
May 18, 2024

A Survey of Practical Haskell: Parsing, Interpreting,
and Testing

Parker Landon
Seattle Pacific University

Seattle, Washington 98119
landonp@spu.edu

Abstract—Strongly typed pure functional programming lan-
guages like Haskell have historically been confined to academia
as vehicles for programming language research. While features
of functional programming have greatly influenced mainstream
programming languages, the imperative programming style
remains pervasive in practical software development. This paper
illustrates the practical utility of Haskell and pure functional
programming by exploring “hson,” a scripting language for
processing JSON developed in Haskell. After introducing the
relevant features of Haskell to the unfamiliar reader, this paper
reveals how hson leverages functional programming to implement
parsing, interpreting, and testing. By showcasing how Haskell’s
language features enable the creation of expressive, maintainable,
and correct code, this paper aims to demonstrate the viability of
pure functional programming in real-world software development
scenarios.

I. INTRODUCTION

A. Object-Oriented Programming

If you’ve written code in a contemporary programming
language, you’re probably familiar with “object-oriented pro-
gramming.” Since its popularity surge among academics and
software developers in the 1990s, the object-oriented paradigm
has dominated mainstream computer programming, existing as
the core of pervasive programming languages like Java and C++
[1]. Object-oriented programming entails encapsulating data
within “objects” possessing properties and behaviors defined by
the object’s “class” [2]. Classes are blueprints for objects: they
represent the type, behaviors, and properties that instantiated
objects of that class will have. The following Rectangle class,
for example, defines _length and _width properties and exposes
an area method.
// The Rectangle Class: a "blueprint" of every Rectangle object

class Rectangle {

private _length: number;

private _width: number;

constructor(length: number, width: number) {

this._length = length;

this._width = width;

}

area() {

return this._length * this._width;

}

}

// myRectangle: an instantiated object of the Rectangle class

const myRectangle = new Rectangle(4, 3);

myRectangle.area(); // 12!

A central aspect of the object-oriented paradigm is encoding
hierarchical relationships between classes via inheritance and
composition [3]. For example, one could use inheritance to
represent the relationship between squares and rectangles (i.e.,
that squares are rectangles) by creating a new class Square that
inherits behaviors and properties from Rectangle.

But why undergo this effort of encoding classes, behaviors,
properties, and relationships? Much motivation for object-
oriented programming stems from the consequences of the
imperative style of traditional programs.

B. Imperative Programming and Side Effects

Imperative programming is a style in which program behavior
is encoded as a sequence of state transitions from an initial state
to a final state [4]. Each operation in an imperative program
may have the side effect of mutating the system’s overall state.
If intentional or “correct,” these side effects incrementally
transition the system’s state toward the desired final state.
However, an unintentional or “incorrect” side effect may cause
the system to produce an unexpected result.

A goal of object-oriented programming (i.e., encoding
classes, behaviors, properties, relationships, etc.) is to encapsu-
late these state updates by containing them within objects and
abstracting them with a defined interface [2, 3]. Interaction
with the private _length and _width properties of the myRectangle
object, for example, is mediated by the Rectangle class and its
defined interface (namely, its constructor and the area method).
The private access modifiers on the _length and _width properties
prevent any code outside the class definition from mutating
those values. This way, state updates are more controlled, and
unintended results are more easily identified as occurring within
a class instead of “somewhere in the system.”

Still, state mutation represents only one kind of side effect.
Programs may also

• print text
• read data from a file
• query a database
• execute other programs
• send emails
• launch missiles [4]

Typically, the imperative style allows these side effects to
occur anywhere in the program, often without any indication
or warning. For example, a program written in TypeScript can
perform input/output operations freely, enabling unrestricted
interaction with the “outside world.”
// The `main` function does not indicate that this program

// launches missiles.

function main() {

console.log("Hello world!");

foo();

}

function foo() {

// Indeed, this program launches missiles.

launchMissiles();

}

While the liberty to produce side effects may feel convenient
when writing a program, it introduces more possibilities for
creating incorrect programs with unexpected results. In general,
programming languages make a trade-off between correctness
and “convenience.” However, an incorrect program is almost
always inconvenient, and a language feature that affords con-
venience during a program’s initial implementation may prove
inconvenient when refactoring and maintaining that program.
The following sections introduce the “functional programming”
(or “FP”) style, a programming language paradigm emphasizing
correctness. As this paper aims to convey, the “restrictions”
introduced by this paradigm are liberating in practice as they
promote correctness, facilitate tractable program reasoning, and
encourage greater developer confidence.

C. Functional Programming and Purity

According to the FP style, a program is a function defined
in terms of other functions; programs are compositions of
functions [5, 6]. Rather than performing computations as
sequences of state transitions, functional computations are
carried out by applying functions to arguments. Of course,
imperative programming languages often provide the ability
to construct and apply functions, too, but the functional
programming style distinguishes itself by promoting purity.

A function is said to be pure if its execution produces no
side effects and its output depends on nothing besides its
input. In other words, the result of a pure function is wholly
determined by its input; it will always produce the same output
given the same input. Thus, the behavior of a pure function
is captured entirely by its definition: its result neither mutates
nor is influenced by any program state [4].

The upshot of purity is that it eliminates the possibility of
unwanted side effects by doing away with side effects altogether.
While this limitation may seem severe, it affords several
benefits that promote correctness. For example, a functional
program is easy to reason about. Because a pure function’s
behavior is captured entirely by its definition, there is never a
concern for how a function operates in the broader context of
a stateful program. For the same reasons, functional programs
tend to be trivial to test. While a test of an impure function

might first require arranging the appropriate preconditions
(a generally laborious task within an imperative program),
testing a pure function simply requires providing it with the
expected inputs and asserting about its outputs. Purity also
affords several benefits when writing parallel programs, since
parallel programming is fundamentally concerned with avoiding
unexpected interactions of side effects [7].

Still, it may seem that there exists a fatal problem with
the purity restriction: a program composed solely of pure
functions is useless. Necessary operations like receiving inputs
and displaying outputs are side effects, so they cannot be per-
formed in a pure context. Fortunately, programming languages
that enforce purity and the functional style—namely “pure
functional programming languages”—offer various methods
for integrating and encapsulating side effects. Haskell, the
pure functional programming language considered in this
work, facilitates effectful programming through monads, which
encode impure functions and create a boundary distinguishing
effectful operations from pure ones [8]. Monads are a part of
Haskell’s rich static type-checking system, another feature like
purity that aims to promote correctness. Although it cannot
eliminate all unexpected or undesired behaviors, static type
checking prevents the programmer from introducing a certain
class of errors, such as adding numbers to boolean values [9].
While disagreement exists about the convenience of static type
checking and the extent to which it ensures program safety
[10, 11], this paper aims to illustrate how Haskell’s robust type
system promotes correctness while enabling flexibility.

Despite their provided benefits, Haskell and other pure
functional programming languages have never reached the
popularity of imperative, object-oriented languages like C++
and Java [1]. In 1998, Philip Wadler presented his paper
Why no one uses functional languages, ascribing this lack
of adoption not to ignorance or inferior program performance
but to shortcomings of strongly-typed functional programming
language implementations and ecosystems at the time [12].
While his concerns with portability, availability, tooling, and
libraries were substantial then, they have largely been addressed
in functional programming languages like Haskell today.

Yet, strongly typed pure functional programming languages
like Haskell still enjoy significantly less practical appli-
cation—for example, in the software engineering industry
and commercial world—than their mainstream counterparts
[13]. Sure, functional programming has greatly influenced
these domains, as features from functional languages like
pattern matching, generics, type inference, and first-class
functions have been adopted by and become central to the
most widely-used programming languages today; however, the
functional programming languages themselves have primarily
remained tools of researchers and hobbyists [1, 13]. Indeed, the
measurable influence of functional features is a testament to
the work of these users; though, as Wadler suggested in 1998,
there exists a tension between applying a language to building
useful systems and using that language to drive programming
language research innovations [12].

Despite the relative obscurity of pure functional program-
ming languages and their traditional origins in programming
language research, many functional programmers advocate for
their fitness in practical settings. Even when pure functional
programming languages were radical, slow, and impractical,
the legendary John Backus endorsed functional programming
as a practical tool in his 1977 Turing Award Lecture Can
programming be liberated from the von Neumann style? [5, 13].

Thus, this paper seeks to demonstrate how Haskell and
strongly typed pure functional programming more broadly
are practical tools for creating useful systems. The following
section introduces hson, a scripting language for processing
JSON implemented in Haskell. Section III introduces Haskell
and several language features utilized within hson for the
uninitiated reader. Finally, sections IV, V, and VI reveal the
implementation details of hson, outlining its parser, interpreter,
and test suite code, with the primary goal of demonstrating how
Haskell and pure functional programming facilitate crafting
expressive, maintainable, and correct code.

II. INTRODUCING HSON

The hson program is a command-line interface for processing
JSON data. Given a script written in the hson language and
JSON data, the hson CLI processes the JSON and outputs a
result according to the hson script. For example, consider the
following JSON data representing a list of restaurants.
[

{

"name": "Parker's Bar and Grill",

"city": "Seattle",

"state": "Washington",

"rating": 4,

"price": 1

},

{

"name": "Smashing Sushi",

"city": "Portland",

"state": "Oregon",

"rating": 5,

"price": 3

},

{

"name": "Barely Barbecue",

"city": "Seattle",

"state": "Washington",

"rating": 1,

"price": 2

}

]

The following hson script retrieves the names of all Seattle
restaurants in the given JSON data.
$.filter(|restaurant| =>

restaurant.city == "Seattle"

).map(|restaurant| =>

restaurant.name

)

When the hson CLI is executed with the provided JSON
data and hson script, the JSON data is parsed and bound to
the $ identifier in the hson script. The hson script then filters
that data for restaurants whose city property is “Seattle” and
maps each restaurant object to its name property.

If the file script.hson contains the above hson script and
the file restaurants.json contains the JSON data, hson can be
run from the command line as follows to produce the desired
results.
$ hson --hf script.hson --jf restaurants.json

[Parker's Pasta, Barely Barbecue]

With an emphasis on readability and familiarity, the syntax of
hson was designed to be similar to that of JavaScript. Operations
like filter and map can be chained like methods, and properties
of objects are accessed with the dot (.) symbol. The construct
|restaurant| => restaurant.name is an anonymous function that
takes a restaurant object as its argument and returns the object’s
name property. Functions in hson are first class, so they can be
passed as arguments to other higher-order functions like filter
and map.

The above hson script can be modified to format its results
as a JSON string with the toJSON function. The pipe operator
|> can also be employed instead of the dot symbol to compose
functions, and each restaurant object can be mapped to a new
object with a single name property.
$ |> filter(|restaurant| => restaurant.city == "Seattle")

|> map(|restaurant| => {name: restaurant.name})

|> toJSON(2)

The pipe operator passes its left-hand side as the first
argument to the function call on its right-hand side. The
argument of 2 in toJSON() specifies an indentation of 2 in the
output string. Rerunning hson with the newly modified script
produces the following output.
$ hson --hf script.hson --jf restaurants.json

[

{

"name": "Parker's Pasta"

},

{

"name": "Barely Barbecue"

}

]

Variables in hson are declared with the let key-
word. For example, in the following script, a function
filterSeattleRestaurants is declared that applies the filter and
map operations from above. Applying that function to the parsed
JSON data (bound to $) produces the same output as before.
let filterSeattleRestaurants = |restaurants| =>

restaurants

|> filter(|restaurant| => restaurant.city == "Seattle")

|> map(|restaurant| => restaurant.name);

filterSeattleRestaurants($)

The hson language supports all JSON data types—arrays,
objects, strings, numbers, booleans, and null—as well as
functions. The semantics of these data types and the syntax

of operations on their values are nearly identical to those of
JavaScript. For example, arrays are indexed with the standard
square bracket notation and, as previously demonstrated, object
properties are accessed with the dot symbol. The following
snippet accesses the restaurant object at index 1 in the input
JSON and prints out its name property.

let restaurant = $[1];

restaurant.name

$ hson --hf script.hson --jf restaurants.json

Smashing Sushi

Like JavaScript, hson also provides array and object destruc-
turing for accessing array indices and object properties. The
following script produces the same result as above (“Smashing
Sushi”) but instead utilizes destructuring for index and property
access.

let [_, restaurant] = $;

let { name } = restaurant;

name

As a more sophisticated example, consider the following
JSON representation of a Turing Machine, where the start,
accept, and reject keys define the start, stop, and reject states of
the machine respectively, and the delta key contains information
about each state transition.

{

"start": "1",

"accept": "accept",

"reject": "reject",

"delta": [

{

"from": "1",

"to": [

{

"result": ["reject", "_", "R"],

"on": "_"

},

{

"result": ["reject", "x", "R"],

"on": "x"

},

{

"result": ["2", "_", "R"],

"on": "0"

}

]

},

{

"from": "2",

"to": [

...

]

},

...

]

}

The following hson script counts the number of transitions
that result in the reject state.
$.delta.reduce(|accumulator, transitions| =>

transitions.to.some(|transition| =>

transition.result[0] == $.reject) ?

accumulator + 1 : accumulator

, 0)

The reduce function is inspired by Haskell’s foldr operation
and is nearly identical to the reduce array method from
JavaScript. Its responsibility in the script above is to keep
track of the transition count. The some function also has a near-
identical analog in JavaScript: it returns true if any element in
the provided array satisfies its predicate function. In the script
above, some returns true if any transition from a given state is the
reject state. Finally, the ternary operator ? conditionally returns
the accumulator value incremented by one if the transition result
is the reject state.

The logic of conditionally tallying list elements can be
abstracted to a higher-order function countWhere, which will
again utilize the reduce operation and the ternary operator to
count the elements that satisfy a given predicate function.
let countWhere = |list, predicate| =>

list.reduce(|accumulator, element| =>

predicate(element) ? accumulator + 1 : accumulator

, 0);

The original counting script can now be rewritten to employ
countWhere, with the provided predicate being the some function
from before.
$.delta |>

countWhere(|delta| =>

delta.to.some(|transition| =>

transition.result[0] == $.reject

)

)

At a high level, an hson script is a sequence of zero or more
variable declarations followed by a single expression. The
output of a script is the result of the evaluated final expression.
Variables in hson are immutable: they cannot be reassigned
after their declaration, and their values cannot change. Values
in hson are computed solely from compositions of functions,
so hson is itself a functional language.

The hson program is responsible for
• reading the hson, JSON, and command line options
• parsing command-line options
• parsing the input hson script
• parsing the input JSON, converting each value to an hson

value and binding the root value to $
• interpreting the input script
• reporting any syntax or runtime errors that occur
The hson codebase also employs property-based testing,

which helps ensure the correctness of the hson parser by running
it on thousands of randomly generated input programs [14].

Sections IV, V, and VI of this paper reveal the implementa-
tion details of parsing, interpreting, and testing within hson. In
turn, these sections illustrate how each hson feature is achieved

through Haskell code and demonstrate how the development of
hson has benefited from utilizing strongly typed pure functional
programming. First, a brief, applied survey of the Haskell
programming language is provided in the following section
for the uninitiated reader, introducing many language features
leveraged within hson.

III. HASKELL BACKGROUND

A. Haskell Types and Functions

Haskell is a statically typed programming language, meaning
that the type of each value is known at compile time and that
programs with type errors will fail to compile. In Haskell, every
value has an associated type. The type of a value is declared
explicitly with the :: symbol.
number :: Int

listOfNumbers :: [Int]

numberTuple :: (Int, Int)

Functions are values, too, and therefore also have types. The
-> symbol denotes the type of a function mapping.
length :: [Int] -> Int

The statement above declares that the function length maps
a list of integers [Int] to a single integer Int. The semantics of
length is intuitive: given a list of integers, return the number of
elements. However, this type definition for length is inflexible:
it cannot be applied to a list of characters, for example.
Fortunately, Haskell provides polymorphic types, enabling type
declarations to include type variables that can instantiate to any
type [4]. For example, the type [a] includes the type variable
a and denotes a homogeneous list containing elements of any
type. Utilizing polymorphic types, the type of length can be
rewritten to support lists of any type.
length :: [a] -> Int

A function f is applied to an argument a with the syntax f
a. Applying the length function to a list list :: [Int] computes
the number of elements list contains.
list :: [Int]

list = [1,2,3]

length list -- 3

What about defining functions with two or more parameters?
For example, how could a trivial function add be defined to
return the Int sum of two Int arguments? A first pass at the
type declaration of add might group the two Int inputs into a
single tuple parameter.
add :: (Int, Int) -> Int

add (x, y) = x + y

The above definition of add maps (Int, Int) tuples to Int
results. Applying add to the values 1 and 2 entails providing
add with the tuple (1, 2).
add (1, 2) -- 3

Now, consider the following new definition of add:
add :: Int -> Int -> Int

add x y = x + y

The -> symbol is right-associative, so Int -> Int -> Int

implicitly means Int -> (Int -> Int) and can be read as “a
function that maps an Int to a function that maps an Int to
an Int.” This style of writing a function with two or more
parameters as a function mapping a single argument to a
function with a single parameter is called currying [13].

With the newly curried type definition, the syntax add 1 2
denotes the application of add to the arguments 1 and 2. Function
application is left-associative, so add 1 2 is equivalent to (add
1) 2. Then, (add 1) could be extracted into a new function
increment, and the expression increment 2 would be equivalent
to (add 1) 2.
increment :: Int -> Int

increment = add 1

increment 2 -- this is the same as (add 1) 2!

Currying enables the simple construction of specific oper-
ations from general ones, making functions more extensible
and robust. Thus, currying is the default style for function
definitions in Haskell.

So far, every function definition has been an equation at the
top level (e.g., add x y = x + y). Alternatively, functions can be
defined with lambda expressions, which have arguments and
a body like any other function but do not have a name. For
example, add can be redefined as a lambda expression.
add :: Int -> Int -> Int

add = \x y -> x + y

Like the original definition of add, this new definition takes
two arguments, x and y, and returns their sum. Lambda
expressions are commonly used to define arguments for higher-
order functions.

B. Typeclasses

The current definition of add can only be applied to integer
arguments. It would be more convenient if add supported other
kinds of numeric values, like decimals. One attempt at a more
reusable add function might utilize polymorphic types in its
definition to support all parameter types.
add :: a -> a -> a

add x y = x + y

However, this code won’t compile because the + operator is
not defined for all types: the Haskell compiler wouldn’t know
how to perform add True False, for example. Thus, add must
only support the class of types for which + is defined. Indeed,
Haskell’s typeclass feature enables overloading operations
for different types and categorizing types according to the
operations they support.

A class declaration describes a new typeclass according to
its operations and their type signatures. A simple typeclass is
the built-in Eq typeclass; its definition indicates that a type a
is an instance of Eq if it defines the equality operator == with
type a -> a -> Bool [15].
class Eq a where

(==) :: a -> a -> Bool

The add function can be extended with the Num typeclass,
which generalizes basic numeric operations like +.

class Num a where

(+) :: a -> a -> a

(-) :: a -> a -> a

(*) :: a -> a -> a

negate :: a -> a

abs :: a -> a

signum :: a -> a

fromInteger :: Integer -> a

Now, the Num typeclass can serve as the context of a in the
type declaration of add, constraining the argument types of add
to those that define addition with the + operator [15].

add :: (Num a) => a -> a -> a

add a b = a + b

C. Defining Types

To introduce a new numeric type, like a type Complex to
represent complex numbers, the data keyword is used. Before
defining Complex, consider the following type declaration for
Bool.

data Bool = True | False

The declaration introduces the type constructor Bool alongside
the values (or data constructors) it comprises (True and False)
[16]. Having provided its data declaration, Bool can now serve
as a type, and its values True and False can be used wherever
a Bool value is expected.

not :: Bool -> Bool

not True = False

not False = True

The above definition of not utilizes pattern matching over
the values of a type. As demonstrated, functions in Haskell can
be redefined for different input patterns. When a function is
applied, the pattern on the left-hand side of its equation (e.g.,
True in not True = False) is matched against the argument. If
the argument aligns with the pattern, the function evaluates
and returns the right-hand side of the equation. Otherwise, the
argument is matched against the pattern in the next equation,
and the process continues until a pattern is matched or all
patterns have been visited, in which case an error occurs [17].

result :: Bool

result = not True -- False!

The type constructor and corresponding data constructors
for Bool are nullary: they take no arguments. However, when
considering a new type Complex, one might expect its data
constructor to take two arguments, the first representing the
real part and the second representing the imaginary part.
Indeed, data constructors can be parameterized; after all,
they are functions that produce results of their corresponding
type [17]. For example, the following data declaration for
Complex introduces a new type Complex and a corresponding data
constructor Comp that takes two Float arguments.

data Complex = Comp Float Float

Having defined Complex with data, new functions on Complex
values can be introduced, and the Comp constructor can be used
wherever a value of type Complex is expected.
myComplexNumber :: Complex

myComplexNumber = Comp 3 4

magnitude :: Complex -> Float

magnitude (Comp x y) = sqrt (x^2 + y^2)

result :: Float

result = magnitude myComplexNumber -- 5.0

Like value constructors, the type constructors in a data
declaration can be parameterized to produce polymorphic types
[16]. A notable example of a polymorphic type is Maybe, which
is declared as follows:
data Maybe a = Just a | Nothing

The Maybe type constructor can be applied to any other type
t to produce a new type, Maybe t [16]. That new type has two
value constructors, Just and Nothing, which could represent
success and failure, respectively [17]. For example, a function
unlock could return a Maybe String value that contains a message
if the provided key is correct and Nothing otherwise.
unlock :: String -> Maybe String

unlock key = if key == "kitten" then Just "Meow!" else Nothing

test1 = unlock "puppy" -- Nothing

test2 = unlock "kitten" -- Just "Meow!"

D. Declaring Instances

The new Complex type representing complex numbers can
be declared as an instance of the Num typeclass. The following
instance declaration provides for the Complex type an appropriate
definition of each operation in the Num typeclass, thus declaring
that the Complex type belongs to Num [15].
instance Num Complex where

(Comp x1 y1) + (Comp x2 y2) = Comp (x1 + x2) (y1 + y2)

(Comp x1 y1) - (Comp x2 y2) = Comp (x1 - x2) (y1 - y2)

(Comp x1 y1) * (Comp x2 y2) =

Comp (x1 * x2 - y1 * y2) (x1 * y2 + x2 * y1)

negate (Comp x y) = Comp (negate x) (negate y)

abs z = Comp (magnitude z) 0

signum (Comp 0 0) = 0

signum z@(Comp x y) = Comp (x / r) (y / r)

where

r = magnitude z

fromInteger n = Comp (fromInteger n) 0

The Num instance declaration for Complex enables Complex values
to be used wherever instances of Num are expected.
add :: (Num a) => a -> a -> a

...

add (Comp 3 4) (Comp 5 6) -- Comp 8.0 10.0

E. Built-in Types

So far, we’ve considered several functions, types, and
typeclasses that are built into Haskell. These base utilities

are provided by the standard prelude, which is a library file
that all Haskell modules import by default [16].

Two built-in parameterized types—types that include type
variables—are list ([]) and Maybe. The list type, denoted [a]
or [] a, represents a sequence of elements of the same type a.
The Maybe type, Maybe a, represents a result that either fails and
is Nothing or succeeds and contains a value of type a within
the Just constructor [16].

Another useful parameterized type is Either a b, which is
defined as follows.
data Either a b = Left a | Right b

Similar to the Maybe type, Either encodes two possibilities;
however, unlike Maybe, both values of Either carry some value.
Either String Int, for example, represents values that contain
a String (within Left) and values that contain an Int (within
Right).

A unique but critical example of a parameterized type is
IO a. As mentioned, Haskell’s type system enforces purity
by distinguishing effectful operations from pure ones. This
boundary is constructed primarily by the IO type, which
represents values whose computation may have demanded
the production of input/output side effects [13]. Consider, for
example, the type of getChar, which reads a character from
stdin.
getChar :: IO Char

Intuitively, getChar produces a Char result. However, because
it entails the effectful operation of reading from stdin, the type
of getChar is annotated with IO.

Generally, values with parameterized type are deemed
“effectful” because those parameterized types capture some
effect, like an input/output side effect. Some effects can be
safely “escaped,” with their internal values being separated
from the structure of the parameterized type. The Maybe type, for
example, can be escaped by pattern matching over its values
Just and Nothing.
unwrapMessage :: Maybe String -> String

unwrapMessage (Just msg) = "Your message is: " ++ msg

unwrapMessage Nothing = "No messages here!"

The upshot of the IO type is that there is no “safe escape”
from it. Once a value’s type is annotated with IO, all subsequent
operations involving that value must also produce an IO result
(barring the use of unsafePerformIO) [13]. Still, the internal value
of an IO result can be operated upon within the framework
of the Functor, Applicative, and Monad typeclasses, which are
introduced in the following section.

F. Built-in Typeclasses: Functor, Applicative, and Monad

Parameterized types are ubiquitous in Haskell as they
qualify existing types and express structure or effects. The
standard prelude provides generic operations for working
with parameterized types, which are captured in the Functor,
Applicative, and Monad typeclasses.

The Functor typeclass declares an operation fmap that facili-
tates the application of a function to the elements of a structure
while preserving that structure’s shape [18].

class Functor f where

fmap :: (a -> b) -> f a -> f b

Per the class declaration, a parameterized type f is an instance
of Functor if it provides the operation fmap that applies a function
a -> b to a value f a and produces a new value f b.

An example of a Functor instance is the type Maybe, which
defines fmap :: (a -> b) -> Maybe a -> Maybe b to apply the pro-
vided function a -> b to the underlying value of a successful
result (Just a) or propagate a failure (Nothing) [16].
instance Functor Maybe where

fmap _ Nothing = Nothing

fmap g (Just x) = Just (g x)

fmap increment (Just 1) -- Just 2

fmap increment Nothing -- Nothing

Similarly, the Functor instance Either defines fmap :: (a -> b)
-> Either t a -> Either t b to apply the provided function to
the underlying value of a Right a result or propagate a Left t
value.
instance Functor (Either t) where

fmap _ (Left x) = Left x

fmap f (Right y) = Right (f y)

fmap increment (Left 2) -- Left 2

fmap increment (Right 2) -- Right 3

The infix operator <$> is equivalent to fmap and more
commonly used.
increment <$> (Left 2) -- Left 2

increment <$> (Right 2) -- Right 3

Notice, fmap and <$> are restricted to applying functions of
single arguments. The Applicative typeclass provides operations
that enable applying functions of several arguments.
class Functor f => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

The syntax class Functor f => Applicative f declares that a
parameterized type belongs to Applicative if it defines the
Applicative operations—pure and <*>—and is an instance of
Functor [15]. With currying and the Applicative operations,
computations over parameterized types can be sequenced and
their results combined, thus generalizing fmap to functions of
several arguments [18]. For example, two Maybe Int operands
can be summed with the +, <*>, and pure operations, producing
Nothing if either operand is Nothing or a Just value otherwise.
pure (+) <*> Just 3 <*> Just 5 -- Just 8

pure (+) <*> Just 4 <*> Nothing -- Nothing

Similarly, Applicative operations on Either values propagate
Left values or produce Right results. The fmap and <$> operations
can be used instead of pure to apply the initial operation in an
applicative sequence.
pure (*) <*> Right 3 <*> Right 2 -- Right 6

pure (*) <*> Left 3 <*> Right 2 -- Left 3

(*) <$> Right 3 <*> Right 2 -- Right 6

(*) <$> Left 3 <*> Right 2 -- Left 3

The Functor and Applicative typeclasses generalize the applica-
tion of functions producing pure results to effectful arguments.
However, they do not capture the common pattern of applying a
function producing an effectful result to an effectful value; this
operation is instead captured by the >>= (pronounced “bind”)
operator provided by the Monad typeclass [16].
class Applicative m => Monad m where

return :: a -> m b

(>>=) :: m a -> (a -> m b) -> m b

For example, consider a function safeSqrt :: Float -> Maybe
Float that returns Nothing if the argument is negative and the
result of the square root operation otherwise.
safeSqrt :: Float -> Maybe Float

safeSqrt x = if x < 0 then Nothing else Just (sqrt x)

safeSqrt 16 -- Just 4.0

safeSqrt (-4) -- Nothing

Given that Maybe is an instance of Monad, safeSqrt operations
can be chained with the >>= operator, repeatedly applying the
square root operation to valid inputs and propagating Nothing
results for invalid inputs.
safeSqrt 256 >>= safeSqrt >>= safeSqrt -- Just 2.0

safeSqrt (-4) >>= safeSqrt -- Nothing

Now, to write a function safeSqrtSum that uses safeSqrt to
compute

√
x +

√
y, several >>= operators can be sequenced

together with lambda expressions that return the Float result,
producing a final Maybe Float value.
safeSqrtSum :: Float -> Float -> Maybe Float

safeSqrtSum x y =

safeSqrt x >>= \l ->

safeSqrt y >>= \r ->

return (l + r)

safeSqrtSum 9 16 -- Just 7.0

safeSqrtSum 4 -1 -- Nothing

Haskell provides the do syntax to express this common pattern
of computation more concisely. The following definition of
safeSqrtSum is equivalent to the previous.
safeSqrtSum x y = do

l <- safeSqrt x

r <- safeSqrt y

return (l + r)

As mentioned, there exists no safe escape from the IO type.
Instead, the Functor, Applicative, and Monad typeclasses provide
a framework for working with IO values. As an instance of
these typeclasses, the IO type supports the operators necessary
to apply and sequence IO operations without needing to escape
the IO type.
-- Read a character from stdin and capitalize it

-- Return the result

getCapitalChar :: IO Char

getCapitalChar = toUpper <$> getChar

-- Read two characters from stdin and compare them with `==`

-- Return the result

compareTwoChars :: IO Bool

compareTwoChars = (==) <$> getChar <*> getChar

-- Print a welcome message and prompt the user for input

-- Return the user input

promptRPS :: IO String

promptRPS = do

print "Welcome to Rock, Paper, Scissors!"

print "Do you choose Rock, Paper, or Scissors?"

getLine

G. More Useful Monads: Except and Reader

So far, we’ve considered several parameterized types, in-
cluding list ([]), Maybe, Either, and IO. Each of these types is
an instance of Monad and finds use in almost every Haskell
program. Some less common, more specialized Monad types
include Reader and Except.

The Reader monad encapsulates computations that access
values held in some fixed, read-only enclosing environment.
The Reader type constructor is parameterized over two types, r
and a [19–21]. The first type parameter r represents the type
of values stored in the environment, and the second parameter
a represents the type of the Reader computation’s result. For
example, a computation of type Reader String Int can access a
String environment value and produces an Int result. Such a
Reader may be constructed with the reader :: (r -> a) -> Reader
r a function, which produces a Reader r a from a function r ->
a. As a contrived example, consider a Reader String Int value
constructed from the function length :: String -> Int.
stringReader :: Reader String Int

stringReader = reader length

The Reader String Int computation is executed with the
runReader function, which takes a Reader and an initial String
value for the environment. In this case, the result of running
the computation is the result of applying length to the provided
String environment.
runReader stringReader "Hello World"

-- 11

Typically, a Reader computation will access the read-only
environment via the ask function [21]. For example, if a String
environment represents the user’s name, then the following
Reader String String computation prints a welcome message to
the user when run.
welcomeMessage :: Reader String String

welcomeMessage = do

name <- ask

return ("Welcome back, " <> name <> ".")

runReader welcomeMessage "Parker"

-- "Welcome back, Parker."

The name Reader describes these computations because the
associated environment data is read-only. Although Reader

computations cannot change environments within their own
scopes, they can call nested Reader computations with modified
environments [21]. The function local :: (r -> r) -> Reader r a
-> Reader r a takes as argument a function that maps the Reader
environment and performs the provided Reader computation with
the new environment. The following example defines a new
Reader computation, welcomeFirstInitial, that truncates the String
environment with firstLetter before calling welcomeMessage.
welcomeFirstInitial :: Reader String String

welcomeFirstInitial = local firstLetter welcomeMessage

where

firstLetter = singleton . head

runReader welcomeFirstInitial "Parker"

-- "Welcome back, P."

In hson, the Reader monad is used in the interpreter to
access the program environment, which is a map that associates
variable identifiers with the values to which they are bound.
The hson interpreter also utilizes the Except monad, which
adds error handling to its computations. The type Except e a
represents a computation that either produces a successful result
of type a or produces an error result of type e [21]. Within an
Except computation, the throwError :: e -> Except e a function
signals an error. In the following code snippet, a new safeSqrt2

function produces a result of type Except String Float and calls
throwError for invalid inputs.
-- Original `safeSqrt` with Maybe result

safeSqrt :: Float -> Maybe Float

safeSqrt x = if x < 0 then Nothing else Just (sqrt x)

-- New `safeSqrt2` with Except String result

safeSqrt2 :: Float -> Except String Float

safeSqrt2 x = if x < 0

then throwError "Received negative input!"

else return (sqrt x)

The advantage of using an Except String result over a Maybe
result is that throwError can provide contextual information
about a failure. Now, when the Except String Float computation
is run with runExcept, it produces an Either String Float result
that represents a successful computation in Right Float or an
error message in Left String.
runSafeSqrt2 x = runExcept (safeSqrt2 x)

runSafeSqrt2 4 -- Right 2.0

runSafeSqrt2 16 -- Right 4.0

runSafeSqrt2 (-1) -- Left "Received negative input!"

H. Monad Transformers and Composing Monads

While the features of the Reader and Except monads are pow-
erful on their own, they grow even mightier when composed.
The monad transformer framework enables combining monad
features into a single new monad through composition [20, 21].
The definitions of Reader and Except reveal that they are aliases
for the ReaderT and ExceptT monad transformers that compose
the Identity monad.

type Reader r a = ReaderT r Identity a

type Except e a = ExceptT e Identity a

The Identity monad is trivial: it provides no features and
represents “no effect” [20, 21]. So, the Reader and Except monads
are special cases of the ReaderT and ExceptT monad transformers,
where the nested monad in composition is Identity.

The ReaderT and ExceptT monad transformers can be composed
to produce a new custom monad, Eval, that provides access to
both a read-only environment and error handling.
type Eval a = ReaderT String (ExceptT String Identity) a

The outermost ReaderT monad has ExceptT as its base,
and the ExceptT monad has Identity as its base. To run an
Eval computation, the runReaderT, runExceptT, and runIdentity
functions are composed to unwrap all the monad transformers
and obtain the final Either String a result.
runEval :: Eval a -> Either String a

runEval x =

runIdentity $ runExceptT $ runReaderT x "Initial Environment"

Monad transformers also allow the integration of effectful
computations with the IO monad. When the innermost Identity
monad in Eval is replaced with IO and the computation is run,
the result is an IO (Either String a) value.
type Eval a = ReaderT String (ExceptT String IO) a

runEval :: Eval a -> IO (Either String a)

runEval x =

runExceptT $ runReaderT x "Initial Environment"

The hson interpreter utilizes the ReaderT, ExceptT, and IO
monad transformers in this way to integrate read-only environ-
ment access, error handling, and I/O effects.

In general, all language features introduced in this section
are utilized considerably within hson. The following sections
demonstrate how hson leverages these language features in its
implementation of parsing, interpreting, and testing.

IV. PARSING

The entry point of all Haskell programs is the main :: IO ()
function. The main function of hson is concise and clear: first
read and parse the command-line options, then read the input
hson script and JSON data, then call run.
main :: IO ()

main = do

opts <- hsonOpts

hsonIn <- readHSON $ hsonInputOpt opts

jsonIn <- readJSON $ jsonInputOpt opts

run jsonIn hsonIn opts

The run function first executes the hson parser on the input
hson script. Then, if the hson parse was successful, run calls
runProg, which parses the input JSON and evaluates the hson
script, eventually printing its result. Providing a JSON input
to hson is optional, so runProg accepts the JSON string as a
Maybe value.
runProg :: Maybe BL.ByteString -> Program -> IO ()

runProg Nothing prog = runInterpretNoJSON prog >>= printResult

runProg (Just json) prog = case decode json of

Left err -> print . JSONParsingError $ T.pack err

Right json -> runInterpretWithJSON json prog >>= printResult

In total, hson has three parse responsibilities: command-line
options, hson script, and JSON data. The following sections
highlight how Haskell language features and techniques con-
tributed to implementing these parsers. This survey begins with
the hson parser, which utilizes parser combinators to encode
the hson grammar and execute recursive-descent parsing.

A. The hson Parser

An hson program comprises a series of zero or more variable
declarations followed by a single expression, as illustrated by
the following type definition.
type Program = ([VarStmt], Expr)

The hson parser is responsible for parsing an input according
to the grammar rules and constructing the appropriate Program
value, which represents the root of the hson parse tree. The
BNF description of the hson language grammar is given in
Appendix A.

The VarStmt type represents variables declared with either
a standalone identifier, a destructured array, or a destructured
object.
data VarStmt

= VarDeclStmt VarDecl

| ObjectDestructureDeclStmt ObjectDestructureDecl

| ArrayDestructureDeclStmt ArrayDestructureDecl

The following code snippet illustrates each kind of variable
declaration.
let restaurants = $; // identifier

let [_, secondRestaurant] = restaurants; // destructured array

let { name } = secondRestaurant; // destructured object

An Expr represents any expression node in the hson parse
tree.
data Expr

= ArrayInitializerExpr ArrayInitializer

| ArrowFunctionExpr ArrowFunction

| BinaryExpr Binary

| CallExpr Call

| ConditionalExpr Conditional

| DollarExpr Dollar

| GetExpr Get

| GroupingExpr Grouping

| IndexExpr Index

| LiteralExpr Literal

| LogicalExpr Logical

| ObjectInitializerExpr ObjectInitializer

| UnaryExpr Unary

| VariableExpr Variable

deriving (Show, Eq)

The simple program 1+2, for example, produces a Program
value with an empty VarStmt list and a BinaryExpr as the root of
the Expr tree.
([]

, BinaryExpr

(Binary

{ binLeft =

LiteralExpr

(Literal

{ litTok =

Token

{ tokenType = TokenNumber

, literal = Just 1

, pos = (line 1, column 1)

}

}

)

, binOp =

Token

{ tokenType = TokenPlus

, literal = Nothing

, pos = (line 1, column 3)

}

, binRight =

LiteralExpr

(Literal

{ litTok =

Token

{ tokenType = TokenNumber

, literal = Just 2

, pos = (line 1, column 5)

}

}

)

}

)

)

The program function within hson’s parser corresponds to the
start rule of the hson grammar and is the entry point for the
recursive descent parser.
program :: HSONParser Program

program = do

declarations <- many declaration

expr <- expression

eof

return (declarations, expr)

The definition of program is expressive enough that even a
Haskell novice could intuit the semantics of each line

1) Parse many variable declarations
2) Parse an expression
3) Expect the end of the input
4) Return the Program parse result
Each function called within the do block of program—many,

declaration, expression, and eof—are themselves functions that
return a parse result. The declaration function, for example,
parses variable declarations like let sum = 1 + 2 and returns a
VarStmt parse result.
declaration :: HSONParser VarStmt

This ability to sequence parse operations within the do block
is afforded by the monadic HSONParser type, which wraps the

result of every parse operation. The definition of the HSONParser
type reveals that it aliases a specific instance of the ParsecT
type.
type HSONParser = ParsecT T.Text () Identity

ParsecT is a monad transformer provided by the parsec library
that defines sequencing, failure, and error-handling operations
for parse computations. The parsec library also defines several
primitive parser combinators, which are parse operations like
many that can be sequenced and composed to produce more
complex parsers [22]. A ParsecT value has four type parameters,
s u m a, where s is the type of the input, u is the type of some
user state, m is an underlying monad, and a is the type of
the parse result. Thus, the HSONParser type simply represents
a ParsecT value with no user state, Identity as its base monad
(“no effect”), and an input of type Text, which is a time and
space-efficient Unicode character string representation [23].

Running parse computations entails calling runParsecT with
the input string, the initial user state, and an optional source
name argument (e.g., the input file name). The hson parser
begins its descent at the program function, has no user state,
and specifies no source name.
runHSONParser :: T.Text -> Either ParseError Program

runHSONParser s = runHSONParser' s program

runHSONParser' :: T.Text -> HSONParser a -> Either ParseError a

runHSONParser' s p = runIdentity $ runParserT p () "" s

The result of an HSONParser Program computation is Either
ParseError Program, which captures the possibility of failure
while parsing program.

The program parser first parses a sequence of zero or more
variable declarations. The declaration function handles each
kind of variable declaration and produces a VarStmt result. The
parseVarDecl, parseObjDestDecl, and parseArrDestDecl functions
handle parsing identifiers, destructured objects, and destructured
arrays, respectively.
declaration :: HSONParser VarStmt

declaration = do

letVar

stmt <-

try parseVarDecl

<|> try parseObjDestDecl

<|> try parseArrDestDecl

<?> "identifier or destructuring"

equal

initializer <- expression

semicolon

return $ stmt initializer

The (<|>) operator is called the “choice combinator”: it
returns the parse result on its left-hand side if successful,
and returns the parse result on the right-hand side otherwise.
The choice operator is combined with the try combinator to
implement arbitrary lookahead. Without the application of try,
a parser will consume input even when it fails. The try p parser
performs the parse operation p but behaves as though no input
was consumed when it fails [22]. Thus, combining try with

choice produces parsers that attempt to parse several alternative
productions before failing.

The <?> operator applies a high-level label to a parser so that,
when it fails without consuming input, the associated error
message includes that label [22]. For example, consider an
incorrect hson program that uses pipe characters (||) instead
of square brackets ([]) for array destructuring.
let |_, secondRestaurant| = restaurants;

When the script is parsed, parsec produces the following
error message for hson to print.
(line 1, column 5):

unexpected "|"

expecting identifier or destructuring

Without the above use of <?>, the failed declaration parser
produces a character-level error message instead.
unexpected "|"

expecting identifier, "{" or "["

The declaration parser executes the parseVarDecl,
parseObjDestDecl, and parseArrDestDecl functions to handle each
kind of variable declaration statement. These three parse
functions each return the same result type: HSONParser (Expr
-> VarStmt). Thus, within the do block, stmt has type Expr ->
VarStmt and is a function that maps an expression to a variable
statement.
stmt <-

try parseVarDecl

<|> try parseObjDestDecl

<|> try parseArrDestDecl

<?> "identifier or destructuring"

In the last line of declaration, the stmt function is finally
applied to the parsed initializer expression, producing the
resulting VarStmt.
initializer <- expression

semicolon

return $ stmt initializer

This implementation of declaration demonstrates the utility
of higher-order functions. The parseVarDecl, parseObjDestDecl,
and parseArrDestDecl functions return new functions that map
an eventual Expr value to a VarStmt result. For example, the
parseVarDecl function parses an identifier and returns a function
that produces a VarStmt when eventually provided the parsed
initializer expression.
parseVarDecl :: HSONParser (Expr -> VarStmt)

parseVarDecl = do

declName <- identifier

return $

\expr ->

VarDeclStmt

VarDecl

{ declName = declName

, initializer = expr

}

In an imperative language, one might return a partially-
constructed VarStmt from a function like parseVarDecl and utilize

mutability or reassignment later to supply the missing initializer
expression. However, if the caller fails to eventually provide that
initializer expression, a VarStmt could float around the program
with missing data and produce unexpected outcomes. Thus,
while Haskell’s immutability restrictions and strong type system
demand thoughtful solutions, they help mitigate uncertainty by
eliminating the possibility of partial and ever-changing values.

For each production in the hson grammar, the hson parser
implements a function that utilizes combinators and patterns
like those found in the definition of declaration. The original
program function calls declaration with the many parser, which
applies the declaration parser zero or more times and returns a
list of parse results [24].
program :: HSONParser Program

program = do

declarations <- many declaration

expr <- expression

eof

return (declarations, expr)

Next, program calls expression, which is responsible for
producing the root Expr node that will be evaluated and output
by hson. The expression function descends through precedence
levels, eventually parsing logical expressions like the null-
coalescing operator ??, the logical “or” operator ||, and the
logical “and” operator &&.
nullCoalesce :: HSONParser Expr

nullCoalesce = do

chainl1 logicOr parseNullCoalesce

where

parseNullCoalesce = parseLogicalOp questionQuestion

logicOr :: HSONParser Expr

logicOr = do

chainl1 logicAnd parseOr

where

parseOr = parseLogicalOp orOr

logicAnd :: HSONParser Expr

logicAnd = do

chainl1 equality parseAnd

where

parseAnd = parseLogicalOp andAnd

The chainl1 combinator is common to each of these logical
expression parsers and is responsible for parsing left-associative
binary operations. Specifically, chainl1 parses one or more
occurrences of a particular expression, each separated by an
operator. The first argument to chainl1 is an expression parser,
HSONParser Expr, and the second argument is an operator parser
with the type HSONParser (Expr -> Expr -> Expr). The operator
parser is responsible for parsing an operator token (e.g., the
“logical and” operator &&) and returning a function that produces
a higher-level expression from left-hand and right-hand side
operand expressions. The final result of chainl1 is given by the
left-associative application of each operator function to each
consecutive operand expression. Effectively, chainl1 encodes

left-associativity while eliminating left-recursion [22, 24]. This
functionality is also useful for parsing left-associative binary
expressions.

equality :: HSONParser Expr

equality = do

chainl1 comparison (try parseNeq <|> parseEq)

where

parseEq = parseBinaryOp equalEqual

parseNeq = parseBinaryOp bangEqual

comparison :: HSONParser Expr

comparison = do

chainl1

term

(try parseGte

<|> try parseGt

<|> try parseLte

<|> parseLt

)

where

parseGt = parseBinaryOp greater

parseGte = parseBinaryOp greaterEqual

parseLt = parseBinaryOp less

parseLte = parseBinaryOp lessEqual

term :: HSONParser Expr

term = do

chainl1 factor (try parsePlus <|> parseMinus)

where

parseMinus = parseBinaryOp minus

parsePlus = parseBinaryOp plus

factor :: HSONParser Expr

factor = do

chainl1 unary (try parseDiv <|> parseMult)

where

parseMult = parseBinaryOp star

parseDiv = parseBinaryOp slash

In summary, the hson parser is the program parser, which
itself composes and sequences several more specific parsers,
each of which comprises several more fundamental parsers
with the most fundamental parsers provided by parsec. The
parser continues its recursive descent down through each parser
combinator until eventually parsing the terminals of the hson
grammar. For example, parsing an array initializer expression
entails applying the brackets parser to the arguments parser, thus
parsing a comma-separated list of expressions between a pair
of square brackets. Terminal parsers also record positions and
relevant tokens for producing friendly error messages within
the hson interpreter.

parseArray :: HSONParser Expr

parseArray = do

bracketPos <- getPosition

elems <- brackets arguments

return $

ArrayInitializerExpr

ArrayInitializer

{ bracket =

Token

{ tokenType = TokenLeftBracket

, literal = Nothing

, pos = bracketPos

}

, elements = elems

}

Parser combinators are a robust tool for implementing
parsers. One can quickly encode an entire language grammar
through composing and sequencing a relatively small collection
of elementary combinators (like that which parsec provides).
Moreover, the declarative style of parser combinators results
in parser code that looks like the associated grammar, with
each function corresponding to a variable and each definition
corresponding to the associated production. Additionally, be-
cause parser combinators are utilized within Haskell, the parser
implementation has access to Haskell’s many features, and
the parser results can be easily integrated with the rest of the
Haskell program.

B. JSON Parsing

The hson program also accepts JSON data as an optional
input and makes it available via the $ identifier. Before hson
can bind the JSON data to $, it must first parse and convert
the raw JSON string to the appropriate hson value.

The following HSONValue data type represents all values within
an hson program. The Function, Method, and Closure values
represent functions within the hson interpreter, and the other
values represent JSON data types.
data HSONValue

= Function Func

| Method (HSONValue -> Func)

| Closure Func Environment

| Array (V.Vector HSONValue)

| Object (Map.Map T.Text HSONValue)

| String T.Text

| Number Scientific

| Bool Bool

| Null

The goal of the JSON parser within hson is to construct the
appropriate HSONValue for each node in the JSON parse tree.
The popular Haskell library aeson makes this JSON parsing
task simple: it provides a typeclass FromJSON that declares an
associated parseJSON operation [25].
class FromJSON a where

parseJSON :: Value -> Parser a

Like the HSONValue type defined in hson, the Value type defined
in aeson represents JSON values as Haskell values, so the
parseJSON :: Value -> Parser a operation maps JSON values to
parser results of the given type. Then, converting JSON values
into HSONValue results entails declaring HSONValue as an instance
of FromJSON and providing the appropriate definition of parseJSON

:: Value -> Parser HSONValue. Because the Value and HSONValue
types are similar, the implementation of parseJSON for HSONValue
is straightforward: map JSON arrays to hson arrays, JSON
objects to hson objects, JSON strings to hson strings, and so
forth. The mapM function is utilized for data structures like arrays
and objects to apply parseJSON to each element.
-- `A` is the `aeson` namespace, `H` is the `hson` namespace

instance A.FromJSON H.HSONValue where

parseJSON (A.Array v) = H.Array <$> mapM parseJSON v

parseJSON (A.Object v) = H.Object <$> mapM parseJSON (A.toMapText v)

parseJSON (A.String v) = return $ H.String v

parseJSON (A.Number v) = return $ H.Number v

parseJSON (A.Bool v) = return $ H.Bool v

parseJSON A.Null = return H.Null

With the HSONValue type declared as an instance of FromJSON,
its values can be produced as the result of JSON decode
operations. In hson, the eitherDecode function is utilized to
produce an Either String HSONValue result, where the Right value
contains the parsed JSON and the Left value contains an error
message.
runProg (Just json) prog = case eitherDecode json of

runProg (Just json) prog = case decode json of

Left err ->

print . JSONParsingError $ T.pack err

Right parsedJSON ->

runInterpretWithJSON parsedJSON prog >>= printResult

If the JSON parse is successful, hson runs the interpreter
with the parsed hson script and JSON data. Otherwise, hson
prints the JSON parse error.

As demonstrated, aeson manages most of the necessary JSON
parsing logic. Thanks to the generalized parseJSON operation
facilitated by Haskell’s typeclasses, the only responsibility of
hson concerning JSON parsing is to define an instance of
FromJSON and run the appropriate decode operation on the raw
JSON input, handling any parse errors that occur.

C. Applicative Command Line Option Parsing

The hson command-line interface accepts a few options that
must also be parsed and handled. Invoking hson with the --help
flag gives the following output that lists each available option.
hson - json processing language

Usage:

hson ((--hf|--hfile|--hsonfile FILENAME.HSON) | SCRIPT)

[(--jf|--jfile|--jsonfile FILENAME.JSON) | (-n|--no-json)]

[-a|--ast] [-p|--pretty-print] [-o|--omit-eval]

Parse JSON according to given hson input.

Available options:

--hf,--hfile,--hsonfile FILENAME.HSON

hson input file.

SCRIPT hson script to be run.

--jf,--jfile,--jsonfile FILENAME.JSON

JSON input file.

-n,--no-json Run hson without a JSON input.

-a,--ast Print the hson parse tree.

-p,--pretty-print Pretty-print the provided hson script.

-o,--omit-eval Omit the evaluated expression output.

-h,--help Show this help text

To summarize,
• The input hson script can be provided from the command

line or a file with the -hf flag.
• By default, hson reads JSON from stdin. The JSON data

can instead be read from a file with the -jf flag, or hson
can be run without a JSON input with the -n flag.

• The -a flag prints the parse tree generated from the
provided hson script.

• The -p flag pretty-prints the provided hson script.
• The -o flag prevents hson from printing the evaluated

expression.
The parsing of each command-line option and the print-

ing and formatting of the above help message is facili-
tated by the optparse-applicative library [26]. Like parsec,
optparse-applicative provides several combinators that can be
sequenced and composed to create new parsers. However,
the combinators that optparse-applicative provides are specific
to parsing command-line options. Moreover, as library name
implies, the optparse-applicative combinators are applicative,
not monadic, so they are sequenced with the fmap (<$>) and
applicative sequencing (<*>) operators instead of with the bind
(>>=) operator or within a do block.

Implementing command-line options begins by defining a
data type with a field corresponding to the value of each option.
data Options = Options

{ hsonInputOpt :: HSONInput

, jsonInputOpt :: JSONInput

, doPrintAst :: Bool

, doPrettyPrint :: Bool

, doOmitEval :: Bool

}

data HSONInput

= HSONFileInput FilePath

| CmdLineIn String

data JSONInput

= JSONFileInput FilePath

| StdIn

| NoJSONInput

The hsonInputOpt field determines whether the hson script
is provided from the command line (CmdLineIn) or from
within a file (HSONFileInput). The jsonInputOpt field determines
whether JSON will be read from standard input (StdIn), a
file (JSONFileInput), or not at all (NoJSONInput). The other fields
correspond to the debugging flags and comprise only True and
False values.

Next, a Parser is created for every possible option value.
Each parser defines the flags that invoke the respective option
(long or short), the placeholder text for the option’s argument

(metavar), and the associated help text. For example, the
following snippet defines the two parsers hsonFileInput and
cmdLineIn that correspond to the HSONFileInput and CmdLineIn
values, respectively.

hsonFileInput :: Parser HSONInput

hsonFileInput =

HSONFileInput

<$> strOption

(long "hf"

<> long "hfile"

<> long "hsonfile"

<> metavar "FILENAME.HSON"

<> help "hson input file."

)

cmdLineIn :: Parser HSONInput

cmdLineIn =

CmdLineIn

<$> argument

str

(metavar "SCRIPT"

<> help "hson script to be run."

)

Once a parser is implemented for each option value, a single
Options parser can be constructed to handle all possible options.
Within this aggregate parser, the applicative operations sequence
options, and the choice operator <|> signals mutually exclusive
options. For example, a user can provide hson either by file or
via the command line, so the choice operator distinguishes the
hsonFileInput and cmdLineIn parsers.

opts :: Parser Options

opts =

Options

<$> (hsonFileInput <|> cmdLineIn)

<*> (jsonFileInput <|> stdin)

<*> printParseTree

<*> prettyPrint

<*> hideEval

The definition of opts expresses the possible command-line
options for hson. The set of command-line options can easily
be extended by modifying the Options data type and defining
and sequencing new option parsers with <*> and <|>.

When hson runs, it first calls execParser to parse the
command-line options, passing in info to specify the infor-
mation displayed in the help text.

runHsonOpts :: IO Options

runHsonOpts =

execParser $

info

(opts <**> helper)

(fullDesc

<> progDesc "Parse JSON according to given hson input."

<> header "hson - json processing language"

)

Once hson parses the command-line options, it reads the
provided hson and JSON according to the values of those
options.
-- Main.hs

main :: IO ()

main = do

-- first, read command line options

opts <- runHsonOpts

-- read hson according to the `hsonInputOpt` option

hsonIn <- readHSON $ hsonInputOpt opts

-- read JSON according to the `jsonInputOpt` option

jsonIn <- readJSON $ jsonInputOpt opts

-- run the program

run jsonIn hsonIn opts

Then, main calls run, which utilizes when and unless to
conditionally execute functions depending on the values of
each debug option.
run json hson opts = case runHSONParser hson of

Left err -> TIO.putStrLn $ T.pack $ show err

Right prog -> do

when

(doPrintAst opts)

(TIO.putStrLn $ T.pack $ show prog)

when

(doPrettyPrint opts)

(TIO.putStrLn $ prettyPrintProg prog)

unless

(doOmitEval opts)

(runProg json prog)

Like monadic parsing with parser combinators, applicative
parsing is concise, expressive, and extensible. In general,
the Monad and Applicative type classes capture patterns of
computation common to many domains. Although the examples
in this section pertain to parsing, the abstract operations for
sequencing and composing effectful operations can extend
naturally to other applications, providing a common language
for computing across many domains. The following section
illustrates how monads can be composed to implement modular
interpreters with enclosed effects.

V. INTERPRETING

A. The Environment

Once hson finishes parsing its inputs, it passes the parse
results to the interpreter to execute the script. The hson
interpreter is responsible for visiting each node in the provided
parse tree, recursively executing the statement nodes, and
evaluating the expression nodes. This process begins with
a call to the runInterpret function by either runInterpretWithJSON
or runInterpretNoJSON.
runInterpretWithJSON ::

HSONValue -> Program -> IO (Either HSONError HSONValue)

runInterpretWithJSON json prog = runInterpret (mkEnv json) prog

runInterpretNoJSON ::

Program -> IO (Either HSONError HSONValue)

runInterpretNoJSON prog = runInterpret (mkEnv Null) prog

The mkEnv function constructs the script’s initial environment,
a map that associates identifiers with the HSONValue values to
which they are bound. If JSON data was provided, hson binds
the parsed value to the $ identifier; otherwise, $ evaluates to
null.
type Environment = Map.Map T.Text HSONValue

mkEnv :: HSONValue -> Environment

mkEnv json = Map.singleton "$" json `Map.union` builtInFunctions

The initial environment also includes all built-in functions
and their associated identifiers, which are defined in the
builtInFunctions table.
builtInFunctions =

Map.fromList

[("keys", mkFunction keys)

, ("values", mkFunction values)

, ("hasProperty", mkFunction hasProperty)

, ("toJSON", mkFunction hsonToJSON)

, ("toString", mkFunction hsonToString)

, ("length", mkFunction hsonLength)

, ("at", mkFunction hsonAt)

, ("reverse", mkFunction hsonReverse)

, ("map", mkFunction hsonMap)

, ("filter", mkFunction hsonFilter)

, ("reduce", mkFunction hsonReduce)

]

Each mkFunction call constructs a Function from a
FunctionDefinition. A FunctionDefinition is a mapping from a list
of values representing arguments to an Eval HSONValue result.
type FunctionDefinition = [HSONValue] -> Eval HSONValue

mkFunction :: FunctionDefinition -> HSONValue

mkFunction f = Function (Func f)

The Eval monad wraps every evaluated result of the hson
interpreter. The definition of Eval reveals a composition of
monad transformers, each introducing a specific feature to
interpreter computations [27].
newtype Eval a = Eval

{ unEval :: ReaderT Environment (ExceptT HSONError IO) a

}

deriving

(Applicative

, Functor

, Monad

, MonadError HSONError

, MonadIO

, MonadReader Environment

)

The ReaderT Environment monad transformer provides all
interpreter computations with read-only access to the program
environment. The ExceptT HSONError monad transformer enables
interpreter computations to produce and handle errors by calling

throwError with HSONError values. The base monad IO integrates
I/O capabilities into the interpreter [21].

The deriving clause generates standard instance declarations
of various typeclasses (e.g., Functor, Applicative, and Monad) for
the Eval type. Without deriving, Eval would need an explicit
instance declaration for every relevant typeclass. In this way,
the deriving clause shortcuts those instance declarations by
inheriting each instance from its representation (i.e., the ReaderT
type it contains). By default, deriving is limited to only a
few typeclasses, but is extended within hson through the
GeneralizedNewtypeDeriving Haskell language extension [28].

B. Defining Built-in Functions

Creating a new built-in function entails defining a
FunctionDefinition, which maps a list of HSONValue arguments
to an Eval HSONValue result, and binding it to a name within
the builtInFunctions table. Consider, for example, the built-in
reverse function, which reverses the elements of a provided
string or array. Under the hood, the environment associates
the reverse identifier with the hsonReverse Haskell function.
When reverse is called within an hson script, the corresponding
hsonReverse Haskell function is executed. The definition of
hsonReverse utilizes pattern matching to operate appropriately
on valid arguments and throw errors for invalid arguments.

builtInFunctions =

Map.fromList

[("keys", mkFunction keys)

, ("values", mkFunction values)

...

, ("reverse", mkFunction hsonReverse)

...

]

...

hsonReverse :: FunctionDefinition

hsonReverse [Array arr] =

return $ Array $ V.reverse arr

hsonReverse [String str] =

return $ String $ T.reverse str

hsonReverse [arg] =

throwError $ UnexpectedType "array or string" (showType arg)

hsonReverse args =

throwError $ ArgumentCount 1 args

The first two equations in the definition of hsonReverse
handle valid arguments. If a single array or string is passed
to reverse, the hsonReverse function applies the appropriate
Haskell reverse function to the argument and returns the result.
The third hsonReverse equation is responsible for throwing an
UnexpectedType error if reverse is called with a single argument
that is not a string or array. Otherwise, the final equation
handles all other argument lists by throwing an ArgumentCount
error.

Compare the above definition of hsonReverse with the near-
identical definition of the built-in length function, which, like

reverse, takes as argument either a string or an array, and
returns the number of elements.
hsonLength :: FunctionDefinition

hsonLength [Array arr] =

return $ Number $ fromIntegral $ V.length arr

hsonLength [String str] =

return $ Number $ fromIntegral $ T.length str

hsonLength [arg] =

throwError $ UnexpectedType "array or string" (showType arg)

hsonLength args =

throwError $ ArgumentCount 1 args

Each built-in function definition follows a similar pattern of
executing the appropriate operations on valid arguments and
throwing the appropriate errors for invalid arguments. Haskell’s
pattern-matching allows for the expressive and direct handling
of every possible argument combination, which helps prevent
mistakes while implementing complex parameter lists. For
example, the includes function takes two string arguments,
haystack and needle, and returns true if needle is a substring
of haystack. If includes does not receive exactly two string
arguments, hson reports a type error.
includes("hello world", "world") // true

includes("hello world", "Parker") // false

// Call error at (line 1, column 9):

// Expected string, received number.

includes("hello world", 3)

The associated hsonIncludes Haskell function defines the
behavior for the hson includes function. Pattern matching is
used to apply the Haskell isInfixOf function to an argument
list consisting of exactly two string elements. Otherwise,
hsonIncludes throws the appropriate error.
hsonIncludes :: FunctionDefinition

hsonIncludes [String haystack, String needle] =

return $ Bool $ needle `T.isInfixOf` haystack

hsonIncludes [String _, arg] =

throwError $ UnexpectedType "string" (showType arg)

hsonIncludes [arg, _] =

throwError $ UnexpectedType "string" (showType arg)

hsonIncludes args =

throwError $ ArgumentCount 2 args

C. First-Class Function Evaluation

Some built-in hson functions are higher-order and accept
other functions as input. For example, the hson map function
accepts two arguments—an array and a function—and applies
the function to each array element.
map([1,2,3], |n| => n + 1) // [2,3,4]

Under the hood, the function argument is represented as
a closure, which, alongside the function behavior, contains
the variables surrounding that function declaration. This way,
a function only has access to the variables defined within
the environment that is active when the function is declared
[29]. To appreciate this behavior, consider the following two

examples. In the first example, the addX function can access the
variable x because x is defined before the declaration of addX.
let x = 2;

let addX = |n| => n + x;

map([1,2,3], addX) // [3,4,5]

However, in the following example, addY cannot access the
value of y. Even though addY is called after y is defined, y is
not in the environment when addY is declared.
let addY = |n| => n + y;

let y = 4;

// Call error at (line 4, column 4):

// Undefined variable "y" at (line 1, column 23).

map([1,2,3], addY)

The Haskell function underlying the hson map function,
hsonMap, reveals how this behavior is encoded.
hsonMap :: FunctionDefinition

hsonMap [Array arr, Closure (Func f) env] =

Array <$> local (const env) (V.mapM (f . L.singleton) arr)

hsonMap [Array _, arg] =

throwError $ UnexpectedType "function" (showType arg)

hsonMap [arg, _] =

throwError $ UnexpectedType "array" (showType arg)

hsonMap args =

throwError $ ArgumentCount 2 args

When hsonMap receives valid arguments (i.e., an array and
a closure), it calls the local operation from ReaderT, which
executes the operation in its second argument with an envi-
ronment modified by the function passed to its first argument.
Here, local receives const env, which effectively replaces the
current environment with the environment stored in the Closure.
The second argument to local is the Haskell map function that
applies the provided function argument to each element in the
array argument.

D. Evaluating hson Programs

The hson interpreter begins by calling runInterpret. At a
high level, runInterpret maps a parsed hson program and an
initial environment to an HSONValue if it succeeds or an HSONError
if it fails. The runInterpret function directly calls interpret,
which returns an Eval HSONValue, and unwraps all of the monad
transformers that Eval comprises.
runInterpret ::

Environment -> Program -> IO (Either HSONError HSONValue)

runInterpret env prog =

runExceptT $ runReaderT (unEval $ interpret prog) env

The interpret function maps an initial Program value to an Eval
HSONValue result representing the evaluated expression at the
end of the hson script. The interpret function utilizes pattern
matching and recursion to handle each variable declaration
before evaluating the final expression in its base case. For each
variable declaration, the interpreter evaluates the associated
initializer expression and binds the identifier to the result.
Then, it recursively calls interpret on the remaining variable
declarations with the newly updated environment. A variable
declaration is either a single identifier, a destructured object,

or a destructured array, so pattern matching is again utilized
to handle each possibility.
interpret :: Program -> Eval HSONValue

-- base case:

interpret ([], expr) = eval expr

-- recursive case:

interpret (stmt : stmts, expr) = do

-- pattern match over the variable declaration types

case stmt of

VarDeclStmt

(VarDecl

(Token _ (Just (String name)) _)

initializer

) -> do

val <- eval initializer

local (Map.insert name val) $ interpret (stmts, expr)

ObjectDestructureDeclStmt

(ObjectDestructureDecl kvs initializer) -> do

val <- eval initializer

case val of

Object o ->

local (Map.union $ bindDestObj kvs o) $

interpret (stmts, expr)

v -> throwError $ UnexpectedType "object" (showType v)

ArrayDestructureDeclStmt

(ArrayDestructureDecl elems initializer) -> do

val <- eval initializer

case val of

Array arr ->

local (Map.union $ bindDestArr elems arr) $

interpret (stmts, expr)

v -> throwError $ UnexpectedType "array" (showType v)

Most of the hson interpreter logic is contained within the
eval function, which evaluates parsed Expr values and produces
Eval HSONValue results.
eval :: Expr -> Eval HSONValue

The eval function pattern matches over all possible expres-
sions, evaluating each expression type appropriately. Evaluation
of literal expressions is the simplest example of eval: given
the token contained with the Literal expression, eval returns
the appropriate value.
newtype Literal = Literal {litTok :: Token}

deriving (Show, Eq)

...

data Token = Token

{ tokenType :: TokenType

, literal :: Maybe HSONValue

, pos :: SourcePos

}

deriving (Show)

...

eval (LiteralExpr (Literal (Token _ (Just v) _))) =

return v

eval (LiteralExpr (Literal (Token TokenTrue _ _))) =

return $ Bool True

eval (LiteralExpr (Literal (Token TokenFalse _ _))) =

return $ Bool False

eval (LiteralExpr (Literal (Token TokenNull _ _))) =

return Null

If a LiteralExpr represents a string or a number literal, then
the literal field contains a Just result with the corresponding
value, which eval returns. Otherwise, the literal field is Nothing,
and eval pattern matches on the tokenType field.

Evaluating a BinaryExpr entails first evaluating left- and right-
hand side operand expressions. Then, eval pattern matches
on the operator token to apply the appropriate operation.
An operation is either a numeric comparison (numCmp), a
numeric operation (numOp), or a “plus” operation (valuePlus) that
applies addition to numeric operands and string concatenation
otherwise.
eval (BinaryExpr (Binary l opTok r)) = do

left <- eval l

right <- eval r

case opTok of

Token TokenEqualEqual _ _ -> return $ Bool $ left == right

Token TokenBangEqual _ _ -> return $ Bool $ left == right

Token TokenGreater _ _ -> numCmp opTok (>) left right

Token TokenGreaterEqual _ _ -> numCmp opTok (>=) left right

Token TokenLess _ _ -> numCmp opTok (<) left right

Token TokenLessEqual _ _ -> numCmp opTok (<=) left right

Token TokenMinus _ _ -> numOp opTok (-) left right

Token TokenStar _ _ -> numOp opTok (*) left right

Token TokenSlash _ _ -> numOp opTok (/) left right

Token TokenPlus _ _ -> valuePlus opTok left right

_otherToken -> throwError $ UnhandledOperator opTok

valuePlus :: Token -> HSONValue -> HSONValue -> Eval HSONValue

valuePlus _ (Number x) (Number y) =

return $ Number $ x + y

valuePlus _ (String x) (String y) =

return $ String $ x <> y

valuePlus _ (Number x) (String y) =

return $ String $ T.pack (show x) <> y

valuePlus _ (String x) (Number y) =

return $ String $ x <> T.pack (show y)

valuePlus opTok _ _ =

throwError $

TypeError opTok "operands must be either strings or numbers"

Logical expressions are evaluated similarly, but the inter-
preter utilizes short-circuiting instead of immediately evaluating
both operands. The Haskell code that implements eval for each
logical operation is so expressive that it almost reads like
English!
eval (LogicalExpr (Logical l opTok r)) = do

left <- eval l

case opTok of

Token TokenOrOr _ _ ->

if isTruthy left then return left else eval r

Token TokenAndAnd _ _ ->

if isTruthy left then eval r else return left

Token TokenQuestionQuestion _ _ ->

if left == Null then eval r else return left

_unrecognizedOperator ->

throwError $ UnhandledOperator opTok

Evaluating a VariableExpr entails finding the associated value
of the identifier in the environment. If the value exists, the
expression evaluates to it; otherwise, an UndefinedVariable error
is thrown. The eval function retrieves the environment from
the ReaderT monad with ask and pattern matches over the Maybe
result of Map.lookup.
eval

(VariableExpr

(Variable tok@(Token TokenIdentifier (Just (String s)) _))

) = do

val <- asks (Map.lookup s)

case val of

Nothing -> throwError (UndefinedVariable tok)

Just v -> return v

A CallExpr represents a function call like doSomething(x, y):
it comprises a callee expression (doSomething) and a list of
argument expressions (x and y). The interpreter evaluates a
CallExpr by first evaluating the callee expression. Then, if
the result is callable, eval will evaluate each argument and
pass their values as arguments to the callee. Otherwise, the
interpreter throws an UncallableExpression error.
eval (CallExpr (Call callee tok args)) = do

res <- eval callee

case res of

Function f -> do

args <- mapM eval args

fn f args `catchError` (throwError . CallError tok)

Closure f env -> do

args <- mapM eval args

local (const env) $

fn f args `catchError` (throwError . CallError tok)

_uncallableValue -> throwError $ UncallableExpression tok

Notice that a callable value is either a Function or a Closure.
The Function value represents a built-in function and does
not have an associated environment. For a Closure, which is
associated with an environment, eval calls local to replace
the current environment with the closure’s environment before
executing the function. Finally, if the function call fails, eval
catches the error with catchError and re-throws it as a CallError.

The eval function definition comprises several other equa-
tions, each handling a particular expression type. The goal of
walking through various equations in its definition has been
to reveal how various Haskell features facilitate a readable,
modular, and correct implementation. As illustrated, Haskell’s
support for pattern matching and recursion simplifies the
process of evaluating each parse tree node while also promoting
expressiveness. Discovering how a particular expression type

is evaluated equates to finding the matching equation within
eval. Adding interpreter support for a new expression type
entails creating a new equation within eval for that type.
Finally, because all eval computations produce a result in
the Eval monad, the interpreter has access to all computational
features afforded by the monad transformers that Eval comprises.
In turn, each computational feature of the interpreter is
clearly expressed in the definition of Eval, and the interpreter
computations and their effects are naturally contained and
separated from the rest of the program.

VI. TESTING

A. Unit Testing

The restrictions enforced by Haskell about types, purity, and
side effects aim to emphasize program correctness and bolster
developer confidence. Still, developers working with other
programming languages, even those that are imperative and
lacking a type system, can feel confident about their code by
testing its behavior. The “unit test,” for example, demonstrates
that an individual software component behaves according to
the original design specification and intention. In a unit test,
the target software component is isolated from the rest of
the system, and the tester defines and controls its input [30].
Essentially, a unit test seeks to answer the question, “Given
a specific input, does the unit of code produce the expected
output (or side effects)?” A standard framework for writing
unit tests is the arrange-act-assert pattern [31]:

1) Organize the predefined input data and environment
(“arrange”)

2) Invoke the target software component with the input
(“act”)

3) Verify that the resulting output matches the expected
output (“assert”)

Ideally, a test ensures that the target software component
behaves correctly for all possible inputs. For example, a test
for a divide(a, b) function seeks to ensure that it produces an
expected result for all numeric a and b. However, testing the
behavior of divide over its entire input domain is infeasible.
So, the arrange-act-assert process might be repeated with, for
example, positive, negative, and fractional inputs.
describe('divide(a, b)', () => {

it('divides positive inputs', () => {

// arrange

const a = 6;

const b = 3;

// act

const result = divide(a, b);

// assert

expect(result).toBe(2);

});

it('divides negative inputs', () => {

...

});

it('divides fractional inputs', () => {

...

});

});

Generally, it is hopeless to test every possible input, but
developers can remain somewhat confident in their code if
the tests pass for various inputs. However, the burden of
generating a sufficient variety of inputs falls on the developers,
and knowing which inputs are worth testing may demand
considerable expertise or creativity. If, for example, one forgets
to test how the divide(a, b) function behaves when b is 0, one
might encounter unexpected behavior or a runtime error in
circumstances where b is possibly 0.

So, code verification via unit testing demands understanding
the possible inputs that the target code may receive. Unfortu-
nately, this means that, in practice, unit tests written for existing
code are only somewhat effective at revealing unexpected
behavior. If all possible inputs are known when testing a chunk
of code, all possible inputs were likely considered and handled
when that code was written. And if an edge case was not
considered when a chunk of code was written, it’s unlikely
that it will suddenly be considered when that code is tested.
Still, unit tests are powerful tools for providing developers with
quick feedback and bolstering code against regressions [32].
Thus, even many Haskell codebases employ unit tests, and
Haskell’s purity restrictions make those tests relatively easy to
write. Where developers working in imperative languages might
spend significant time setting up the complex system state or
environment with which their target software interacts [32],
Haskell developers need only provide the appropriate inputs
to the target functions, since purity guarantees that function
outputs depend only on their inputs and modify no system
state [4].

B. Property-Based Testing

The hson code base does not yet employ unit tests but
leverages a different technique called property-based testing.
As the name implies, property-based tests work by verifying
that a chunk of code abides by a property [4]. For example,
one could implement a property-based test for the following
property of the divide(a, b) function.
for all numeric a, b

such that b != 0

divide(a, b) * b == a

The advantage of property-based testing over unit testing is
that assertions are no longer made about specific inputs and
outputs. Instead, assertions are made about all outputs given
any input that satisfies the property’s conditions. Then, instead
of manually checking that a property holds for some inputs, an
assertion is run against the function for thousands of randomly
generated inputs. And, because Haskell functions are pure,
there is no need to set up and tear down the correct state and
environment for each input.

C. Parser Testing with QuickCheck

The popular Haskell library QuickCheck facilitates this
random, repeated input generation and output assertion for
property-based tests [14]. In the hson codebase, QuickCheck
tests the parser, ensuring a positive answer to the question,
“Given any valid string expression in the hson language, does
the hson parser generate the appropriate parse tree?”

Verifying this behavior with property-based testing requires
generating arbitrary valid expressions for the parser. In hson,
this random string generation is accomplished by generating
arbitrary valid parse trees and pretty-printing them. In this
case, pretty-printing refers to the inverse of parsing: instead
of constructing a parse tree from an input program string, a
pretty-printer maps a parse tree to a program string that could
have generated it [33].

The hson codebase pretty-prints parse trees with the pretty
package [34, 35]. The following code snippet contains functions
responsible for pretty-printing hson expressions.
prettyPrintExpr :: Expr -> T.Text

prettyPrintExpr = prettyPrint ppExpr

ppExpr :: Expr -> Doc

ppExpr (ArrayInitializerExpr (ArrayInitializer _ elems)) =

brackets $ commaSep $ map ppExpr elems

ppExpr (ArrowFunctionExpr (ArrowFunction params body)) =

pipes (commaSep $ map ppTok params)

<+> text "=>"

<+> ppExpr body

ppExpr (BinaryExpr (Binary l op r)) =

ppExpr l <+> ppTok op <+> ppExpr r

ppExpr (CallExpr (Call callee _ args)) =

ppExpr callee <> parens (commaSep $ map ppExpr args)

ppExpr (ConditionalExpr (Conditional cond matched unmatched)) =

ppExpr cond

<+> char '?'

<+> ppExpr matched

<+> char ':'

<+> ppExpr unmatched

ppExpr (DollarExpr (Dollar tok)) = ppTok tok

ppExpr (GetExpr (Get obj prop)) =

ppExpr obj <> char '.' <> ppTok prop

ppExpr (GroupingExpr (Grouping expr)) =

parens $ ppExpr expr

ppExpr (IndexExpr (Index indexed _ index)) =

ppExpr indexed <> brackets (ppExpr index)

ppExpr (LiteralExpr (Literal tok)) = ppTok tok

ppExpr (LogicalExpr (Logical l op r)) =

ppExpr l <+> ppTok op <+> ppExpr r

ppExpr (ObjectInitializerExpr (ObjectInitializer _ entries)) =

ppObjectLiteral entries

ppExpr (UnaryExpr (Unary op r)) = ppTok op <> ppExpr r

ppExpr (VariableExpr (Variable name)) = ppTok name

With a pretty-printer implemented for hson expressions,
property-based testing can be applied to the expression parser.
The approach taken in hson is to generate an arbitrary valid

parse tree, pretty-print it, and then parse the pretty-printed
program [36]. If the pretty-printer is correct and the original
arbitrary parse tree is valid, then the parser is correct if the
output parse tree matches the input parse tree. The property
can be expressed as follows.

for all parse trees a

such that a is valid

parse(prettyPrint(a)) == a

This property asserts that two functions, namely parse and
prettyPrint, are inverses of each other. These “round-trip
properties” are popular targets for property-based testing thanks
to their succinct form [37]. The property’s “valid” condition
requires that the given parse tree is “possible,” or that some
program generates it. In practice, the “valid” condition means,
for example, that the parse tree follows the precedence rules
of the language. Expressions with lower precedence are never
direct children of expressions with higher precedence; binary
expressions representing addition should never be children of
binary expressions representing multiplication.

Encoding this test in Haskell requires only a function that
maps an input Expr value to a Bool test result. The type
Expr represents a node in the hson expression parse tree, so
the checkExpressionParser test takes a parse tree as input and
produces True if the test passes and False otherwise.

checkExpressionParser :: Expr -> Bool

checkExpressionParser ast =

case runHSONExprParser (prettyPrintExpr ast) of

Left _ -> False

Right a -> ast == a

The runHSONExprParser (prettyPrintExpr ast) operation corre-
sponds to parse(prettyPrint(a)) in the original formulation of
the property; it’s responsible for pretty-printing and parsing the
input Expr tree. If the parser produces an error, the test returns
False. Otherwise, the test asserts that the resulting parse tree a
matches the input parse tree ast, returning True if so and False
otherwise.

The test runs with a call to quickCheck checkExpressionParser,
but QuickCheck first requires a definition of the Expr type as
an instance of the Arbitrary typeclass. Declaring an Arbitrary
instance entails defining how QuickCheck should generate
arbitrary values for the given data type, which is accomplished
by defining an operation arbitrary. The arbitrary definition
for the Expr type requires encoding the precedence rules for
operations to eliminate the possibility of generating invalid
parse trees. The instance declaration also requires sizing rules
to prevent QuickCheck from generating infinitely large parse
trees. Otherwise, parse tree nodes like ArrayInitializerExpr that
can have an arbitrarily large number of children may blow up
and grow forever. Fortunately, QuickCheck provides the sized
and resize functions that constrain the depth of the generated
parse tree. The primary expression generator in hson utilizes the
sized and resized functions to halve the size parameter every
time a recursive node like ArrayInitializerExpr is generated
[14].

primaryExprGenerator :: Gen Expr

primaryExprGenerator =

QC.oneof

[LiteralExpr <$> arbitrary

, DollarExpr <$> arbitrary

, VariableExpr <$> arbitrary

, GroupingExpr

<$> QC.sized (\n -> QC.resize (n `div` 2) arbitrary)

, ArrayInitializerExpr

<$> QC.sized (\n -> QC.resize (n `div` 2) arbitrary)

, ObjectInitializerExpr

<$> QC.sized (\n -> QC.resize (n `div` 2) arbitrary)

]

D. Interpreting Property-Based Test Results

Besides the errors that arose from defining the Arbitrary
instance for Expr, implementing property-based testing for the
hson parser presented two other error types.

1) The pretty-printer implementation did not correctly convert
a parse tree to a string program (e.g., it printed the contents
of a string literal without surrounding it with quotes).

2) The parser did not correctly parse a generated input.
The property test has three sources of failure in total:

the parse tree generator, the pretty-printer, and the parser.
Discerning the source of a particular error from among these
three possibilities is straightforward.

1) An invalid parse tree indicates an error with the parse tree
generator and, more specifically, the Arbitrary instance
definition.

2) An unexpected program string given a valid parse tree (e.g.,
a string literal expression printed without surrounding
quotes) indicates a bug with the pretty-printer.

3) If the parse tree and pretty-printed program are correct,
an error has occurred within the parser.

The first two error cases represent unintended behavior
within the test setup and are undesirable. The third error type,
however, implies that a test has successfully identified a bug by
generating an unhandled edge case. The property test helped
identify several bugs related to precedence and ambiguity this
way. The following test output concerning a GetExpr is a notable
example of a successful test.
*** Failed! Falsified (after 9993 tests and 3 shrinks):

GetExpr

(Get

{ object =

VariableExpr

(Variable

{ varName =

Token

{ tokenType = TokenIdentifier

, literal = Just leaf

}

}

)

, property =

Token

{ tokenType = TokenIdentifier

, literal = Just let

}

}

)

The QuickCheck test output reveals that, after running
9993 randomly generated tests, it identified a counterexample
that falsifies the target property. The output also includes
the defective input, which QuickCheck produced after three
“shrinks.” A shrink is an operation performed by QuickCheck
when it discovers a counterexample—a generated input that
leads to a failed assertion. The goal of shrink is to produce the
smallest similar counterexample that also falsifies the property
[38]. Implementing shrink is an optional aspect of declaring an
Arbitrary instance and entails defining a function shrink :: a ->
[a] that returns a list of simpler values from a given generated
value. The Arbitrary instance declaration for Expr contains both
arbitrary and shrink function definitions.

instance Arbitrary Expr where

arbitrary =

QC.oneof

[ArrayInitializerExpr <$> arbitrary

, ArrowFunctionExpr <$> arbitrary

, BinaryExpr <$> arbitrary

, CallExpr <$> arbitrary

, ConditionalExpr <$> arbitrary

, DollarExpr <$> arbitrary

, GetExpr <$> arbitrary

, GroupingExpr <$> arbitrary

, IndexExpr <$> arbitrary

, LiteralExpr <$> arbitrary

, LogicalExpr <$> arbitrary

, ObjectInitializerExpr <$> arbitrary

, UnaryExpr <$> arbitrary

, VariableExpr <$> arbitrary

]

shrink

(ArrayInitializerExpr (ArrayInitializer tok elems)) =

exprLeaves

++ elems

++ [ArrayInitializerExpr (ArrayInitializer tok elems')

| elems' <- QC.shrink elems

]

shrink (ArrowFunctionExpr (ArrowFunction params body)) =

exprLeaves

++ [body]

++ [ArrowFunctionExpr (ArrowFunction params body')

| body' <- QC.shrink body

]

shrink (BinaryExpr (Binary l tok r)) =

exprLeaves

++ [l, r]

++ [BinaryExpr (Binary l' tok r')

| (l', r') <-

QC.shrink (l, r)

]

shrink (CallExpr (Call callee tok args)) =

exprLeaves

++ (callee : args)

++ [CallExpr (Call callee' tok args')

| (callee', args') <- QC.shrink (callee, args)

]

shrink

(ConditionalExpr

(Conditional cond matched unmatched)

) =

exprLeaves

++ [cond, matched, unmatched]

++ [ConditionalExpr

(Conditional

cond'

matched'

unmatched'

)

| (cond', matched', unmatched') <-

QC.shrink (cond, matched, unmatched)

]

shrink (DollarExpr (Dollar _)) = []

shrink (GetExpr (Get obj tok)) =

exprLeaves

++ [obj]

++ [GetExpr (Get obj' tok)

| obj' <- QC.shrink obj

]

shrink (GroupingExpr (Grouping expr)) =

exprLeaves

++ [expr]

++ [GroupingExpr (Grouping expr')

| expr' <- QC.shrink expr

]

shrink (IndexExpr (Index indexed tok index)) =

exprLeaves

++ [indexed, index]

++ [IndexExpr (Index indexed' tok index')

| (indexed', index') <- QC.shrink (indexed, index)

]

shrink (LiteralExpr (Literal _)) = []

shrink (LogicalExpr (Logical l tok r)) =

exprLeaves

++ [l, r]

++ [LogicalExpr (Logical l' tok r')

| (l', r') <- QC.shrink (l, r)

]

shrink

(ObjectInitializerExpr (ObjectInitializer tok entries)) =

exprLeaves

++ mapMaybe snd entries

++ [ObjectInitializerExpr

(ObjectInitializer tok entries'

)

| entries' <- QC.shrink entries

]

shrink (UnaryExpr (Unary tok r)) =

exprLeaves

++ [r]

++ [UnaryExpr (Unary tok r')

| r' <- QC.shrink r

]

shrink (VariableExpr (Variable _)) = []

When QuickCheck attempts to shrink a counterexample, it
calls the appropriate shrink function to produce an ordered list
of candidates, then tries to pick a simpler counterexample from
that list [39]. If the Arbitrary instance declaration for a type does
not define shrink, the function defaults to producing an empty
list, and QuickCheck does not try to simplify counterexamples
of that type. However, meticulously implementing shrink for
complex recursive structures like Expr has a substantial payoff.
Instead of producing a large parse tree, the test above produced
a single GetExpr node counterexample, which can be pretty-
printed to produce the following hson program.
leaf.let

The counterexample’s simplicity helped immediately reveal
the source of the error. The parser rejected leaf.let because
the property let is a reserved word in hson, and the identifier
parser combinator used for object properties fails when it
encounters reserved words.
parseGet :: HSONParser (Expr -> Expr)

parseGet = do

dot

-- `identifier` fails if the parsed string is a reserved word

property <- identifier

return $

\object -> GetExpr Get{object = object, property = property}

This behavior of the hson parser is unintentional and
potentially disruptive. If an object contained the property let,
a user could not access that property by writing $.let within
hson.

The failed test also suggested that hson might reject reserved
words that appear as properties in object literal expressions
like the following:
{ false: true }

Indeed, when input to the hson parser, the program produced
the following error.
unexpected reserved word "false"

expecting expression

Again, the use of the identifier parser combinator was the
source of the error.
keyValue = do

k <- try tokenString <|> identifier -- the culprit!

colon

v <- expression

return (k, Just v)

In summary, although implementing property-based testing
for the hson parser demanded significant setup effort, it revealed

several bugs and their sources through simple counterexamples.
The bugs preventing reserved words from being defined and
accessed as properties of objects, for example, would not
have been identified without the thousands of random tests
generated by QuickCheck. In general, each success of property-
based testing represents an edge case that might not have been
considered while writing unit tests.

VII. CONCLUSION

This paper has demonstrated how strongly typed pure
functional programming languages can be applied practically to
crafting safe and expressive code for building useful software.
The techniques utilized within the hson implementation—
parser combinators, applicative interfaces, monad transformers,
and property-based testing—are likely novel to the common
programmer as they stem from an approach fundamentally
different than the mainstream imperative style. The goal of
detailing these features has been to illustrate how the seemingly
restrictive nature of types and purity is an advantage that, when
wielded, promotes correctness, maintainability, and tractable
program reasoning. In turn, this paper has sought to show
that functional programming language features are not merely
exciting for the sake of programming language research but
also genuinely benefit those leveraging them in practical
applications. The reader who finds these points interesting or
compelling is encouraged to explore functional programming
and experience the delight and confidence afforded by the
guarantee that type errors, untamed side effects, and unexpected
state mutations are made improbable.

The range of Haskell language features surveyed in this paper
is not exhaustive and only begins to demonstrate the language’s
capabilities. A possible extension to this paper and the hson
implementation is to employ compile-time meta-programming
with Template Haskell [40]. Many code patterns are repeated
throughout the implementation of hson, especially within the
built-in function definitions (see Section V-B), and could be
abstracted into compile-time code generation. This work could
also be extended to demonstrate how strong typing and purity
simplify writing concurrent programs [7]. Specifically, the hson
parser and interpreter implementations could be augmented
to leverage Concurrent Haskell and Software Transactional
Memory for modular concurrency that preserves correctness
[41, 42].

APPENDIX A
HSON LANGUAGE GRAMMAR

⟨program⟩ ::= {⟨declaration⟩} ⟨expr⟩

⟨declaration⟩ ::= let ⟨binding⟩ = ⟨expr⟩;

⟨binding⟩ ::= ⟨ident⟩
| ⟨object-dest⟩
| ⟨array-dest⟩

⟨object-destructure⟩ ::= { [⟨object-destructure-entry⟩{,
⟨object-destructure-entry⟩ }] }

⟨object-destructure-entry⟩ ::= ⟨ident⟩[: ⟨ident⟩]
| ⟨string-literal⟩: ⟨ident⟩

⟨array-destructure⟩ ::= [[⟨ident⟩{, ⟨ident⟩}]]

⟨expr⟩ ::= ⟨arrow-function⟩

⟨arrow-function⟩ ::= | [⟨ident⟩{, ⟨ident⟩}] | => ⟨expr⟩
| ⟨pipe-forward⟩

⟨pipe-forward⟩ ::= ⟨ternary⟩ { |> ⟨call⟩ }

⟨ternary⟩ ::= ⟨null-coalesce⟩ [? ⟨expr⟩ : ⟨expr⟩]

⟨null-coalesce⟩ ::= ⟨logical-or⟩ { ?? ⟨logical-or⟩ }

⟨logical-or⟩ ::= ⟨logical-and⟩ { || ⟨logical-and⟩ }

⟨logical-and⟩ ::= ⟨equality⟩ { && ⟨equality⟩ }

⟨equality⟩ ::= ⟨comparison⟩ { (!= | ==) ⟨comparison⟩ }

⟨comparison⟩ ::= ⟨term⟩ { (>= | > | <= | <) ⟨term⟩ }

⟨term⟩ ::= ⟨factor⟩ { (+ | -) ⟨factor⟩ }

⟨factor⟩ ::= ⟨unary⟩ { (* | *) ⟨unary⟩ }

⟨unary⟩ ::= { (!! | ! | -) } ⟨unary⟩
| ⟨call⟩

⟨call⟩ ::= ⟨primary⟩ { ((⟨arguments⟩) | [⟨expr⟩] | .⟨ident⟩
) }

⟨primary⟩ ::= $

| true

| false

| null

| ⟨ident⟩
| ⟨array⟩
| ⟨object⟩
| ⟨string-literal⟩
| ⟨number-literal⟩
| (⟨expr⟩)

⟨ident⟩ ::= (⟨letter⟩ | _) { ⟨alphaNum⟩ | _ | ’ }

⟨array⟩ ::= [⟨arguments⟩]

⟨arguments⟩ ::= [⟨expr⟩{, ⟨expr⟩}]

⟨object⟩ ::= { [⟨object-entry⟩{, ⟨object-entry⟩ }] }

⟨object-entry⟩ ::= (⟨string-literal⟩ | ⟨ident⟩) : ⟨expr⟩
| ⟨ident⟩

⟨string-literal⟩ ::= As described in the Haskell Report [43].

⟨number-literal⟩ ::= ⟨natural⟩
| ⟨float⟩

⟨natural⟩ ::= As described in the Haskell Report [43].

⟨float⟩ ::= As described in the Haskell Report [43].

APPENDIX B
HSON REFERENCE

$ is the identifier to which the parsed JSON data is bound.

filter(array, predicate) returns a copy of array filtered to
contain only the elements for which predicate returns true.

map(array, function) returns a copy of array in which each
new element is the result of applying function to the original
element.

toJSON(value, indent) returns a string containing the JSON
representation of value. The optional indent parameter specifies
the number of spaces of indentation in the resulting JSON
string.

some(array, predicate) returns true if there exists some
element in array for which predicate returns true.

reduce(array, function, initial) first applies a binary function
to initial and the first element of array, then applies function
to that result and the second element of array, and so on. Once
function has been applied to every element in array, reduce
returns the final accumulated result.

reverse(value) returns a copy of value with its elements in
reverse order if value is an array. If value is a string, reverse
returns a copy of value with its characters in reverse order.

length(value) returns the number of elements in value if value
is an array. If value is a string, length returns the number of
characters in value.

includes(haystack, needle) returns true if the string haystack
contains the substring needle and returns false otherwise.

APPENDIX C
SPU HONORS RESEARCH SYMPOSIUM MAY 18, 2024
BRIDGING THE GAP: DECONSTRUCTING ACADEMIC

ATTITUDES FOR ACCESSIBILITY

Hello everyone! My name is Parker Landon. I’m a computer
science and applied math major, and the topic of my honors
project is programming languages. Specifically, my research
focuses on a particular programming language paradigm called
“functional programming.” This programming style has histori-
cally been confined to the margins of software development
and used primarily in academia as a vehicle for programming
language research. However, functional programming is hailed
by its users for facilitating expressive, maintainable, and correct
code. Thus, my research explores how functional programming
can be applied as a practical tool for creating useful software.
I used functional programming to implement a program called
“hson,” a scripting language and command-line interface for
processing JSON data. Before I discuss my work, allow me to
provide more context about programming language paradigms.

Programming languages provide the means of instructing
computers to carry out tasks; they are the tools of computer
programmers for expressing ideas and implementing programs.

Even among the uninitiated, for whom computer programming
seems like a black box, the names of popular programming
languages are widely known. Perhaps you’ve heard of C,
C++, Java, or JavaScript. Or Python, R, or Matlab. Or Swift,
Kotlin, C#, Ruby, Go, Rust, Lisp, Perl, or, the topic of this
research, Haskell. There are many programming languages,
each offering different features that make them better suited for
certain applications. The C and Go programming languages, for
example, are simple languages with similar syntaxes. However,
C programs are responsible for manual memory management,
while Go programs handle memory management with garbage
collection. Consequently, C is more commonly used in low-
level hardware applications where fine-grained control over
memory is necessary. Go, on the other hand, is a better choice
for building reliable, resilient web servers.

Still, C and Go share a common style. Besides their similar
syntaxes, programs in both languages are sequences of state-
ments that transition the system from an initial state to a final
state. This characteristic is the hallmark of the “imperative”
programming style. Each statement in an imperative program
may have the “side effect” of mutating the system’s overall state.
For example, an imperative program that computes the result of
some number x raised to the nth power might read as follows.
“Let i equal 0, and let s equal 1. Then, while i is less than n,
update the value of s to be x times s, then increment i by 1.
Return s as the result.” Throughout this example program, the
values associated with the variables i and s are mutated several
times until s contains our desired result. However, even in this
small, contrived example, the program would be very wrong
if I had accidentally used “less than or equal” instead of “less
than” or forgotten to increment i by one during each iteration.
In this way, unintentional mutations or side effects can produce
unexpected results that lead to incorrect programs. While these
mistakes are somewhat easy to spot in small programs, a real
program with many variables and functions that may or may
not mutate those variables can be challenging to navigate and
impossible to reason about.

Since the 1990s, a paradigm that aims to manage these side
effects called object-oriented programming has dominated
mainstream computer programming, and languages like Java,
C++, and C# that embraced this style have remained among the
most popular languages of the tech industry. Object-oriented
programming entails structuring data within “objects” that
possess properties and behaviors defined by that object’s
“class.” A class is a blueprint for objects: it describes their
type, behaviors, and properties. The upshot of object-oriented
programming is that it attempts to contain the complexity of
imperative programs by encapsulating state and side effects
within objects and abstracting them away with a defined
interface. A Rectangle class, for example, might encapsulate the
length and width properties of a rectangle and expose an interface
for computing its area. This way, mutating a rectangle’s length
and width properties is confined to the behaviors of the Rectangle
class, so the source of “rectangle errors” can be more easily

identified as occurring within the Rectangle class instead of
“somewhere in the system.”

Still, state mutation represents only one kind of side effect.
Statements within an imperative program can also print text,
read from a file, query a database, execute other programs,
send emails, and launch missiles. Typically, the imperative
style allows these side effects to occur anywhere in the
program, often without any indication or warning. While this
liberty to produce side effects may feel convenient when
writing a program, it introduces more possibilities for creating
incorrect programs with unexpected results. In this way, it
appears that programming languages must compromise between
correctness and convenience. The object-oriented style, while
attempting to manage the complexity of state and mutations,
still emphasizes convenience, allowing unrestricted side effects
but encapsulating them within classes.

Meanwhile, throughout this object-oriented tidal wave, a
marginalized world of researchers and hobbyists has enjoyed
and praised a different style, namely functional programming.
In contrast to object-oriented programs, functional programs
heavily emphasize correctness, expressiveness, and elegant
correspondence to formal mathematical models. According to
the functional programming style, a program is a composition
of functions that each produce an output given an input.
Rather than performing computations as sequences of state
transitions, functional programs compute by applying functions
to arguments. Of course, the imperative programming style
may utilize functions, too, but the functional programming
style distinguishes itself by promoting purity.

A function is said to be pure if its execution produces no
side effects and its output depends on nothing besides its
input. In other words, the result of a pure function is wholly
determined by its input; it will always produce the same output
given the same input. Thus, the behavior of a pure function
is captured entirely by its definition: its result neither mutates
nor is influenced by any program state.

The upshot of purity is that it eliminates the possibility of
unwanted side effects by doing away with side effects altogether.
While this limitation may seem severe, it affords several benefits
that promote correctness. For example, a functional program
is easy to reason about. Because a pure function’s behavior is
captured entirely by its definition, there is never a concern for
how a function operates in the broader context of a stateful
program. For the same reasons, pure functions are typically
trivial to test and are much easier to parallelize.

Still, it may seem that there exists a fatal problem with the
purity restriction: a program composed solely of pure functions
is useless. Necessary operations like receiving inputs and
displaying outputs are side effects, so they cannot be performed
in a pure context. Fortunately, programming languages that
enforce purity and the functional style—namely “pure func-
tional programming languages”—offer various methods for
integrating and encapsulating side effects. The pure functional

programming language considered in this work, Haskell, facil-
itates effectful programming through monads, which encode
impure functions and create a boundary distinguishing effectful
operations from pure ones. Monads are a part of Haskell’s rich
static type-checking system, another feature like purity that
aims to promote correctness. Static type-checking ensures that
a written program contains no errors concerning the types
of values, like adding a number to a string of characters.
Although static type-checking cannot eliminate all unexpected
or undesired behaviors, it prevents the programmer from
introducing a common class of errors.

So, functional programming leverages “restrictions” like purity
and static typing to promote correctness and facilitate tractable
program reasoning. These “restrictions,” in practice, actually
feel liberating as they encourage elegant solutions and greater
developer confidence. Yet, strongly typed pure functional
programming languages still enjoy significantly less practical
application—for example, in the software engineering industry
and commercial world—than their mainstream, imperative coun-
terparts. Yes, functional programming has greatly influenced
these domains, as functional language features like pattern
matching, generics, type inference, and first-class functions
have been adopted by and become central to the most widely-
used programming languages today; however, the functional
programming languages themselves have primarily remained
tools of researchers and hobbyists. Indeed, the measurable
influence of functional features is a testament to the work of
these users; though, as researchers have acknowledged, there
exists a tension between applying a language to building useful
systems and using that language to drive programming language
research innovations.

Still, despite the traditional origins of functional programming
in academic research, those initiated to the style tend to
advocate heartily for its fitness in practical settings. Motivated
by an interest in this sentiment, I settled on pursuing the
following question in my research: How could a pure functional
programming language be applied practically to creating useful
software? I sought to answer this question by first learning a
pure functional programming language, familiarizing myself
with the functional style, and then using it to build a program
that affords tangible benefits.

The programming language I set out to learn is called
Haskell. Haskell is notorious among software engineers for its
strangeness and supposedly steep learning curve. Its adherence
to the functional paradigm and explicit correspondence to
a relatively obscure field of mathematics called “category
theory” lead many to avoid it. However, Haskell’s historical
commitment to purity and strong typing made it the perfect
subject of this research, and its nearly legendary status as
esoteric supplemented my intrigue.

Admittedly, Haskell was challenging to learn. The novelty of
the functional style and the intricacy of Haskell’s type system
made for slow initial progress. However, the intimidating
world of Haskell and functional programming eventually grew

comfortable, and critical concepts like functors and monads
felt less like terrors to be dreaded and more like tools to
be wielded. At this point, I was confident I could begin
working on a software project to demonstrate the efficacy
and practicality of pure functional programming. This project,
which I’m calling “hson,” is a command-line program for
processing data in the JSON format. JSON is a pervasive
data format in contemporary software engineering, finding use
in applications like configuration files and data interchange.
Consequently, reading and working with the contents of JSON
data is a common operation within the terminal. Hence, the
hson program seeks to provide a simple and efficient command-
line interface for processing and manipulating that data.

The hson program takes two inputs—the JSON data to be
processed and a script in the hson language—and processes the
JSON data according to the hson script. For example, suppose
you had a web response that contained a JSON-formatted list
of restaurant information. You could pipe that data into the
hson program alongside an hson script that filters the list for
restaurants in Seattle, and hson would produce the appropriately
filtered list.

As suggested, an hson script comprises code in the hson
language, which I designed and implemented for this project.
The syntax and semantics of the hson language draw much
inspiration from JavaScript to preserve familiarity. Some of
hson’s features include destructuring assignment, anonymous
functions, the dot and bracket notations for property access,
the pipe operator, and built-in higher-order functions like map,
filter, and reduce. The ability to manipulate the input JSON
data from within hson is enabled by the dollar sign symbol,
which is bound to the parsed JSON data before the script is
executed.

At a high level, an hson script is a sequence of zero or
more variable declarations followed by a single expression.
The output of a script is the result of the evaluated final
expression. Variables in hson are immutable: they cannot
be reassigned after their declaration, and their values cannot
change. Computations are performed solely through sequencing
and composing functions, so hson is, fittingly, a functional
language.

Creating a scripting language like hson entails implementing
two key components: a parser, which turns text into lexical
tokens and structures those tokens into a parse tree according
to the grammar rules of the language; and an interpreter,
which traverses the parse tree produced by the parser and
executes the appropriate code. The hson program is also
responsible for parsing the input JSON data, parsing other
command-line options, and reporting any syntax or runtime
errors that occur. Finally, hson leverages property-based testing
to ensure the correctness of the hson parser. To summarize,
the hson program has three sweeping responsibilities: parsing,
interpreting, and testing. My research demonstrates how Haskell
and pure functional programming can deliver these features

while facilitating expressive, maintainable, and correct code in
the process.

Parsing, the first of hson’s sweeping responsibilities, encom-
passes three distinct tasks: parsing the JSON data, parsing
the hson script, and parsing the command-line options. Each
of these tasks is implemented using a different technique.
The JSON parsing task has the simplest implementation, as
it leverages an existing JSON parsing library and Haskell’s
type class feature to define how each JSON value should be
converted into hson.

The hson script parser, in contrast, leverages higher-order
functions called “parser combinators” to sequence and compose
parsers. A parser combinator takes another parser as input and
produces a new, composite parser as output. For example, a
parser responsible for parsing variable declarations can be
composed with the many parser combinator to produce a new
parser that handles “many variable declarations.” The results
of these parser computations are contained within the Parser
monad, which defines and manages sequencing, failure, choice,
and error-handling operations. The advantage of leveraging
monadic parser combinators is that one can quickly encode
an entire language grammar by composing and sequencing a
relatively small collection of elementary combinators. More-
over, the declarative style of parser combinators results in
parser code that looks like the associated grammar, with
each function corresponding to a variable and each definition
corresponding to the related production. Additionally, because
parser combinators are utilized within Haskell, the parser
implementation has access to Haskell’s many features, and
the parser results can be easily integrated with the rest of the
Haskell program.

Finally, the command-line option parser leverages an applicative
parsing interface that, like monadic parser combinators, affords
operations for sequencing and composing, but is aptly more
concise for the simpler task.

The second responsibility of hson, interpreting, utilizes pattern-
matching to descend the parse tree and evaluate each node
appropriately. Pattern-matching is a Haskell feature that allows
a function to be redefined for various input types. Then,
when the function is called with a particular value, Haskell
calls the first function whose input pattern matches that
value’s type. In the case of interpreting, an evaluate function
can be defined for each expression type, and Haskell will
handle calling the appropriate definition of evaluate for each
parse tree node. Pattern-matching is also used within the
hson interpreter to implement built-in functions like map and
reduce. Each built-in function definition follows the similar,
readable pattern of pattern-matching over the argument types
to execute the appropriate operations on valid arguments and
throw proper errors for invalid arguments. Finally, the hson
interpreter utilizes monad transformers, which enable monad
features to be combined into a single new monad through
composition. Specifically, interpreter results are contained
within a custom Eval monad that comprises more fundamental

monads, introducing features like a read-only environment for
variable bindings, operations for error handling, and the ability
to produce input/output side effects. In sum, these Haskell
features facilitate an intepreter implementation that is modular,
expressive, and extensible.

Finally, hson leverages property-based testing to ensure the
correctness of its parser. Property-based testing is a robust tech-
nique that is especially well-suited for functional programming
and deviates from a more typical style of testing called “unit
testing.” In a unit test, a target software component is isolated
from the rest of the system, and the tester defines and controls
its input. Essentially, a unit test seeks to answer the question,
“Given a specific input, does the unit of code produce the
expected output or side effects?” While unit tests can bolster
confidence about how the code handles certain kinds of inputs,
it is hopeless to test every possible input, so the code may
still be susceptible to unconsidered edge cases. Property-based
testing mitigates this risk by generating thousands of random
inputs and asserting that a particular property holds for a unit
of code given those inputs. Then, instead of asserting about
specific inputs and outputs, property-based tests assert about all
outputs given any input that satisfies the property’s conditions.
For the hson parser, property-based testing revealed several
bugs and their sources through simple counterexamples to
the tested properties, identifying edge cases that may have
otherwise been missed.

As mentioned, pure functional programming languages have
primarily remained tools of academia. Indeed, Haskell has
developed a reputation for being the language of academic
white papers, not real software applications. Furthermore,
Haskell’s esoteric status and adherence to formal theory have
bolstered a widespread allegation that it’s indecipherable by
mere mortals and lowly engineers. However, through my
past year’s journey, I’ve discovered that learning Haskell
is both an attainable and rewarding feat for non-academic
engineers. Not only is Haskell rich enough to build practical
software, as I’ve demonstrated in implementing hson, but
it also constitutes the origin of many modern programming
language features. Mainstream languages are gradually adopting
functional constructs and robust type systems, so the skills
acquired by learning Haskell are more transferable than ever.

Recently, several promising technologies have fully embraced
the functional paradigm. The Nix package manager for Linux
enables a declarative approach to system configuration with its
purely functional configuration language. More recently, the
version one release of the strongly typed functional language
Gleam has impressed the software engineering community with
its approach to marrying simplicity with expressiveness and
fault-tolerant concurrency.

To conclude, I’ll address the apparent problem that my effort to
bring Haskell down from the ivory tower of academia and to the
practical masses has culminated in my producing an academic
paper and presenting at an academic research symposium.
Researching programming languages has made it abundantly

clear that academic papers and computer science scholarship
are not a means by which engineers consume information
or communicate. The primary forums for discussing software
engineering are Twitter, YouTube, GitHub, and blogs: platforms
that encourage brevity and facilitate low barriers to entry.
Recognizing this, I’ve made an effort throughout my research to
share learnings and condensed versions of my work in several
blog posts and tweets, which are all made available on my
website parkerlandon.com.

Haskell is a remarkable manifestation of theory colliding with
practice, and its many features offer all programmers some-
thing to enjoy and learn from. Pure functional programming
languages are robust tools for crafting expressive, maintainable,
and correct code, and they need not be limited to the bounds
of programming language research. Understanding problems,
expressing ideas, and implementing solutions are part of what
it means to be human, and the pure functional style offers
programmers an elegant means of accomplishing these duties
within the domain of software engineering. If nothing else, I
hope my work encourages another curious programmer like
myself to try functional programming and discover the fun of
programming. Thank you.

REFERENCES

[1] D. Syme, “The early history of F#,” in 2020 Proceedings of the ACM
on Programming Languages, Jun. 2020. [Online]. Available: https:
//www.microsoft.com/en-us/research/publication/the-early-history-of-f/

[2] A. Snyder, “Encapsulation and inheritance in object-oriented
programming languages,” in Conference Proceedings on Object-Oriented
Programming Systems, Languages and Applications, ser. OOPSLA ’86.
New York, NY, USA: Association for Computing Machinery, 1986, p.
38–45. [Online]. Available: https://doi.org/10.1145/28697.28702

[3] A. T. Cohen, “Data abstraction, data encapsulation and object-oriented
programming,” SIGPLAN Not., vol. 19, no. 1, p. 31–35, jan 1984.
[Online]. Available: https://doi.org/10.1145/948415.948418

[4] Z. Hu, J. Hughes, and M. Wang, “How functional programming
mattered,” National Science Review, vol. 2, no. 3, pp. 349–370, 07 2015.
[Online]. Available: https://doi.org/10.1093/nsr/nwv042

[5] J. Backus, “Can programming be liberated from the von neumann
style? a functional style and its algebra of programs,” Commun.
ACM, vol. 21, no. 8, p. 613–641, aug 1978. [Online]. Available:
https://doi.org/10.1145/359576.359579

[6] J. Hughes, “Why Functional Programming Matters,” The Computer
Journal, vol. 32, no. 2, pp. 98–107, 01 1989. [Online]. Available:
https://doi.org/10.1093/comjnl/32.2.98

[7] K. Hammond, “Why Parallel Functional Programming Matters: Panel
Statement,” in Reliable Software Technologies - Ada-Europe 2011,
A. Romanovsky and T. Vardanega, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 201–205.

[8] P. Wadler, “The essence of functional programming,” in Proceedings
of the 19th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, ser. POPL ’92. New York, NY, USA:
Association for Computing Machinery, 1992, p. 1–14. [Online].
Available: https://doi.org/10.1145/143165.143169

[9] B. C. Pierce, Types and programming languages. MIT press, 2002.
[10] E. Meijer and P. Drayton, “Static typing where possible, dynamic typing

when needed: The end of the cold war between programming languages,”
01 2004.

[11] J. Ousterhout, “Scripting: higher level programming for the 21st century,”
Computer, vol. 31, no. 3, pp. 23–30, 1998.

[12] P. Wadler, “Why no one uses functional languages,” ACM Sigplan Notices,
vol. 33, no. 8, pp. 23–27, 1998.

[13] P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler, “A history of
haskell: being lazy with class,” in Proceedings of the third ACM SIGPLAN
conference on History of programming languages, 2007, pp. 12–1.

https://www.microsoft.com/en-us/research/publication/the-early-history-of-f/
https://www.microsoft.com/en-us/research/publication/the-early-history-of-f/
https://doi.org/10.1145/28697.28702
https://doi.org/10.1145/948415.948418
https://doi.org/10.1093/nsr/nwv042
https://doi.org/10.1145/359576.359579
https://doi.org/10.1093/comjnl/32.2.98
https://doi.org/10.1145/143165.143169

[14] K. Claessen and J. Hughes, “Quickcheck: a lightweight tool for random
testing of haskell programs,” SIGPLAN Not., vol. 35, no. 9, p. 268–279,
sep 2000. [Online]. Available: https://doi.org/10.1145/357766.351266

[15] C. V. Hall, K. Hammond, S. L. Peyton Jones, and P. L.
Wadler, “Type classes in haskell,” ACM Trans. Program. Lang.
Syst., vol. 18, no. 2, p. 109–138, mar 1996. [Online]. Available:
https://doi.org/10.1145/227699.227700

[16] G. Hutton, Programming in haskell. Cambridge University Press, 2016.
[17] P. Hudak and J. H. Fasel, “A gentle introduction to haskell,” ACM Sigplan

Notices, vol. 27, no. 5, pp. 1–52, 1992.
[18] R. Paterson, “Constructing applicative functors,” in International Con-

ference on Mathematics of Program Construction. Springer, 2012, pp.
300–323.

[19] M. P. Jones and L. Duponcheel, “Composing monads,” Technical Report
YALEU/DCS/RR-1004, Department of Computer Science. Yale . . . , Tech.
Rep., 1993.

[20] M. P. Jones, “Functional programming with overloading and higher-
order polymorphism,” in Advanced Functional Programming: First
International Spring School on Advanced Functional Programming
Techniques Båstad, Sweden, May 24–30, 1995 Tutorial Text 1. Springer,
1995, pp. 97–136.

[21] M. Grabmuller, “Monad transformers step by step,” 01 2006.
[22] D. Leijen and E. Meijer, “Parsec: Direct style monadic

parser combinators for the real world,” Tech. Rep. UU-CS-
2001-27, July 2001, user Modeling 2007, 11th International
Conference, UM 2007, Corfu, Greece, June 25-29, 2007. [Online].
Available: https://www.microsoft.com/en-us/research/publication/parsec-
direct-style-monadic-parser-combinators-for-the-real-world/

[23] B. O’Sullivan, “text: An efficient packed unicode text type.” 2024.
[Online]. Available: https://hackage.haskell.org/package/text

[24] D. Leijen, P. Martini, and A. Latter, “parsec: Monadic parser combinators,”
2023. [Online]. Available: https://hackage.haskell.org/package/parsec

[25] B. O’Sullivan, “aeson: Fast json parsing and encoding,” 2023. [Online].
Available: https://hackage.haskell.org/package/aeson

[26] P. Capriotti and H. Campbell, “optparse-applicative: Utilities and
combinators for parsing command line options,” 2023. [Online].
Available: https://hackage.haskell.org/package/optparse-applicative

[27] S. Liang, P. Hudak, and M. Jones, “Monad transformers and modular
interpreters,” in Proceedings of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ser. POPL ’95.
New York, NY, USA: Association for Computing Machinery, 1995, p.
333–343. [Online]. Available: https://doi.org/10.1145/199448.199528

[28] G. Team, “Ghc user’s guide documentation,” 2023. [Online]. Available:
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/index.html

[29] R. Nystrom, Crafting interpreters. Genever Benning, 2021.
[30] J. Whittaker, “What is software testing? and why is it so hard?” IEEE

Software, vol. 17, no. 1, pp. 70–79, 2000.
[31] D. D. Ma’ayan, “The quality of junit tests: an empirical study

report,” in Proceedings of the 1st International Workshop on Software
Qualities and Their Dependencies, ser. SQUADE ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 33–36. [Online].
Available: https://doi.org/10.1145/3194095.3194102

[32] P. Runeson, “A survey of unit testing practices,” IEEE Software, vol. 23,
no. 4, pp. 22–29, 2006.

[33] P. Wadler, “A prettier printer,” The Fun of Programming, Cornerstones
of Computing, pp. 223–243, 2003.

[34] J. Hughes, “The design of a pretty-printing library,” 01 2006, pp. 53–96.
[35] D. Terei, “pretty: Pretty-printing library,” 2018. [Online]. Available:

https://hackage.haskell.org/package/pretty-1.1.3.6
[36] “Parsec parser testing with quickcheck,” 2007. [Online]. Avail-

able: https://lstephen.wordpress.com/2007/07/29/parsec-parser-testing-
with-quickcheck/

[37] H. Goldstein, J. W. Cutler, D. Dickstein, B. C. Pierce, and A. Head,
“Property-based testing in practice,” in 2024 IEEE/ACM 46th International
Conference on Software Engineering (ICSE). IEEE Computer Society,
2024, pp. 971–971.

[38] H. Goldstein, S. Frohlich, M. Wang, and B. C. Pierce, “Reflecting on
random generation,” Proc. ACM Program. Lang., vol. 7, no. ICFP, aug
2023. [Online]. Available: https://doi.org/10.1145/3607842

[39] J. Hughes, “Experiences with QuickCheck: Testing the Hard Stuff
and Staying Sane,” in A List of Successes That Can Change the
World: Essays Dedicated to Philip Wadler on the Occasion of His 60th
Birthday, S. Lindley, C. McBride, P. Trinder, and D. Sannella, Eds.

Cham: Springer International Publishing, 2016, pp. 169–186. [Online].
Available: https://doi.org/10.1007/978-3-319-30936-1_9

[40] T. Sheard and S. P. Jones, “Template meta-programming for
haskell,” in Proceedings of the 2002 ACM SIGPLAN Workshop
on Haskell, ser. Haskell ’02. New York, NY, USA: Association
for Computing Machinery, 2002, p. 1–16. [Online]. Available:
https://doi.org/10.1145/581690.581691

[41] S. P. Jones, A. Gordon, and S. Finne, “Concurrent haskell,” in POPL,
vol. 96, 1996, pp. 295–308.

[42] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy, “Composable
memory transactions,” in Proceedings of the Tenth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming,
ser. PPoPP ’05. New York, NY, USA: Association for Computing
Machinery, 2005, p. 48–60. [Online]. Available: https://doi.org/10.1145/
1065944.1065952

[43] S. Marlow et al., “Haskell 2010 language report,” 2010.

All links were last followed on May 31, 2024.

https://doi.org/10.1145/357766.351266
https://doi.org/10.1145/227699.227700
https://www.microsoft.com/en-us/research/publication/parsec-direct-style-monadic-parser-combinators-for-the-real-world/
https://www.microsoft.com/en-us/research/publication/parsec-direct-style-monadic-parser-combinators-for-the-real-world/
https://hackage.haskell.org/package/text
https://hackage.haskell.org/package/parsec
https://hackage.haskell.org/package/aeson
https://hackage.haskell.org/package/optparse-applicative
https://doi.org/10.1145/199448.199528
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/index.html
https://doi.org/10.1145/3194095.3194102
https://hackage.haskell.org/package/pretty-1.1.3.6
https://lstephen.wordpress.com/2007/07/29/parsec-parser-testing-with-quickcheck/
https://lstephen.wordpress.com/2007/07/29/parsec-parser-testing-with-quickcheck/
https://doi.org/10.1145/3607842
https://doi.org/10.1007/978-3-319-30936-1_9
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/1065944.1065952
https://doi.org/10.1145/1065944.1065952

	A Survey of Practical Haskell: Parsing, Interpreting, and Testing
	Recommended Citation

	Introduction
	Object-Oriented Programming
	Imperative Programming and Side Effects
	Functional Programming and Purity

	Introducing hson
	Haskell Background
	Haskell Types and Functions
	Typeclasses
	Defining Types
	Declaring Instances
	Built-in Types
	Built-in Typeclasses: Functor, Applicative, and Monad
	More Useful Monads: Except and Reader
	Monad Transformers and Composing Monads

	Parsing
	The hson Parser
	JSON Parsing
	Applicative Command Line Option Parsing

	Interpreting
	The Environment
	Defining Built-in Functions
	First-Class Function Evaluation
	Evaluating hson Programs

	Testing
	Unit Testing
	Property-Based Testing
	Parser Testing with QuickCheck
	Interpreting Property-Based Test Results

	Conclusion
	Appendix A: hson Language Grammar
	Appendix B: hson Reference
	Appendix C: SPU Honors Research Symposium May 18, 2024Bridging the Gap: Deconstructing Academic Attitudes for Accessibility

