Ground-State Properties of a Model of a Two-Dimensional System of Liquid Helium Three

Roger H. Anderson
Seattle Pacific Institute of Research, Seattle, Washington

and

Theodore C. Foster
Department of Physics, University of California, San Diego
La Jolla, California

ABSTRACT

An investigation is made of the low temperature behavior of a two-dimensional many-fermion system parameterized to serve as a model of a mono-molecular layer of liquid He3. The calculations are made using the Λ_{oo} approximation of the Martin-Schwinger thermodynamic Green's function theory. A Herzfeld potential is used for the two-body interaction in order that the resulting T matrix equation can be solved exactly. Three sets of the three parameters of this potential are chosen by requiring that they reproduce either the experimental and theoretical low temperature second virial coefficient, the phase shifts calculated from the six-twelve potential, or the experimental binding energy and density of the three-dimensional system. The chemical potential, energy per particle, density, and specific heat are calculated. Of the three sets of parameters the maximum binding energy for the two-dimensional system results from the potential which predicts the correct three-dimensional experimental energy and density. The maximum binding in this case is 1.1^0K at a density corresponding to $r_o = 6.1^0A$. Three-dimensional calculations were made with the several sets of parameters with the result that the virial coefficient and phase shift sets predict too little attraction.
I. INTRODUCTION

A theoretical calculation of the low temperature properties of a two-dimensional system of He\(^3\) is of interest because of recent experimental work\(^1\) on monomolecular layers of liquid helium. This paper reports the results of a calculation of the binding energy, density, chemical potential, and specific heat of a two-dimensional model of liquid He\(^3\) in the zero-temperature limit. The calculations are based on Puff's \(\Lambda_{\infty}\) approximation of the Martin-Schwinger thermodynamic Green's function theory and the numerical work has been done on an electronic computer.

A brief discussion of the Green's function equations and the approximations used here in solving them is contained in Section II. The \(\Lambda_{\infty}\) theory requires a transition (T) matrix analogous to the K-matrix of Brueckner theory. A two-body potential is chosen that will allow us to solve the integral T matrix equation exactly. This potential is the Herzfeld potential, an infinite repulsive core plus an attractive square well. The determination of the parameters of this potential is discussed in Section III. Section IV presents numerical results for the low temperature properties of interest and contains a discussion of the specific heat. Finally Section V contains a discussion of these results. In the case of the two-dimensional fermion system used as a model of a monolayer of He\(^3\) the implicit assumption is made that the substrate is sufficiently smooth on the atomic scale so that no bound states exist and so that the effective mass of the single particle states is not greatly altered. Also, in the calculation of the specific heat, strong adhesive forces are assumed so that the excitations which determine the low-temperature limit of specific
heat are the excitations of the two-dimensional many-body system. These assumptions are discussed further in Section V.

II. GREEN'S FUNCTION EQUATIONS

The Martin-Schwinger Green's function approach to the many-body problem will yield the exact ground-state properties of the system if the exact one-particle Green's function can be obtained. However, each Green's function of a given order is obtained from the Green's function of the next higher order, and so the entire hierarchy of equations must be solved to obtain the exact G_1. In coordinate space the first two of these equations are

$$G_1(y') = G_1^0(y') + G_1^0(1,2) \cdot V(2,3) \cdot G_2(2,3,3+1')$$

$$G_2(12,1'2') = G_1^0(1,1') \cdot G_1(2,2') - G_1^0(1,2') \cdot G_1(2,1')$$

$$+ G_1^0(1,3) \cdot V(3,4) \cdot G_3(234,4+1'2').$$

Here G_1^0 is the solution of the differential equation of motion for G_1 with no interaction term. The numerical indices denote position, time, and spin. Integration over space and time and summation over spin is intended for repeated indices. The time dependence of V is simply

$$V(2,3) = \sum \propto \ell^2 (r_2 - r_3) \delta (t_2 - t_3).$$

The usual approximation made is to truncate the infinite chain of equations above by factoring the G_3 of Eq. (2) into symmetrized products of G_1 and G_2, keeping correlations between particles interacting through V.
This is a low density approximation and means in words that when two particles are interacting their motion is independent of all other particles in the medium. This can be expressed analytically as

\[\mathcal{V}(2,3) G_3(12,3,1'2'3') \approx \mathcal{V}(2,3) \left[G_i(1',1') G_2(2',3,2'3') \right. \\
- G_i(1',2') G_2(2',3,1'3') + G_i(1'3') G_2(2,3,1'2') \left. \right]. \] (4)

Substituting this expression for \(G_3 \) into Eq. (2) yields what is called \(\Lambda_{10} \) approximation. The resulting equation for \(G_2 \) is

\[G_2(1,1') = G_i(1',1') G_i(2,2') - G_i(1',2') G_i(2,1') \]

\[+ \frac{1}{2} \left[G_i(1,3) G_i(2,4) + G_i(1,3) G_i(2',4) \right] \mathcal{V}(3,4) G_2(3',4,1'2'). \] (5)

A further approximation can also be made, which consists of replacing the \(G_i \)'s in the square brackets with \(G_i^{0} \)'s. This is called the \(\Lambda_{00} \) approximation, and this theory has been investigated thoroughly for nuclear matter by Puff\(^3\) and subsequently by Falk and Wilets\(^4\) and Reynolds and Puff.\(^5\) The difference between \(\Lambda_{00} \) and \(\Lambda_{10} \) has been investigated for nuclear matter\(^6,7\) with the result that \(\Lambda_{10} \) predicts slightly less binding than does \(\Lambda_{00} \). This paper will rely solely on the \(\Lambda_{00} \) theory.

Equation (5) can be converted into an integral equation for a T matrix, defined by \(V G_2 = T G_1 G_1 \), which is analogous to the K matrix used by Brueckner. In the zero temperature limit of the \(\Lambda_{00} \) theory, with the condition that the chemical potential \(\mu \) be negative, the integral
The equation in momentum space is

\[
\begin{align*}
\langle \mathbf{k}, \mathbf{k}' \mid T(\omega) \mid \mathbf{k}, \mathbf{k}' \rangle &= \langle \mathbf{k}, \mathbf{k}' \mid \mathbf{n} - \mathbf{n}_\text{ex} \mid \mathbf{k}, \mathbf{k}' \rangle \\
&+ \int \frac{d^3 k''}{(2\pi)^3} \langle \mathbf{k}, \mathbf{k}' \mid \mathbf{n} - \mathbf{n}_\text{ex} \mid \mathbf{k'', k''} \rangle \left[\omega - \frac{\hbar^2}{2m} (2k''^2 + \frac{1}{2} k'^2) \right]^{-1} \\
&\times \langle \mathbf{k}, \mathbf{k}' \mid T(\omega) \mid \mathbf{k}, \mathbf{k}' \rangle
\end{align*}
\]

(6)

where \(K \) and \(k'' \) are the center of mass and relative momenta respectively.

Once this \(T \) matrix has been obtained the bulk properties of the system can be calculated using the following equations self-consistently:

\[
V(k, \omega) = \int \frac{d^3 k_2}{(2\pi)^3} \hat{\rho}(k_2) \langle \mathbf{k}, \mathbf{k}_2 \mid T(\omega + \omega_0(k_2)) \mid \mathbf{k}, \mathbf{k}_2 \rangle
\]

(7)

\[
\omega_0(k) = \frac{\hbar^2 k^2}{2m} + V(k, \omega_0(k)) - \mu
\]

(8)

\[
\hat{\rho}(k) = \Theta(k_F - k) \left[1 - \frac{\partial V(k, \omega)}{\partial \omega} \bigg|_{\omega = \omega_0(k)} \right]^{-1}
\]

(9)

\[
E/N = \left(\frac{2}{\rho} \right) \int \frac{d^3 k_1}{(2\pi)^3} \hat{\rho}(k_1) \left\{ \frac{\hbar^2 k_1^2}{2m} + \omega_0(k_1) + \mu \right\}
\]

(10)

\[
\rho = 2 \int \frac{d^2 k}{(2\pi)^2} \hat{\rho}(k).
\]

(11)

Equations (6), (7), (10), and (11) can be converted easily to apply to a two-dimension system by changing the integrations from

\[
\int \frac{d^3 k}{(2\pi)^3}
\]

to

\[
\int \frac{d^2 k}{(2\pi)^2}.
\]
III. TWO-BODY INTERACTION

Equation (6) for the T matrix can be solved exactly for either a sum of square wells or a sum of separable potentials. We have chosen the Herzfeld potential for calculational purposes in order to avoid the non-local nature of the separable potential while keeping the numerical aspects of the problem tractable. The $\text{He}^3 - \text{He}^3$ interaction is then parameterized by three quantities (a_1, the hard core radius; a_2, the radius of the outer edge of the attractive well; and V_o, the well depth). These parameters can be determined by requiring that they reproduce the second virial coefficient in the low temperature range.

There are experimental data for the second virial coefficient $B(T)$ in the range from 1.5 to 4 K, and outside that range values have been calculated using the six-twelve and exponential-six potentials. The general expression for the second virial coefficient is

$$B(T) = \frac{1}{32} \left(\frac{2\pi \hbar^2}{kT m/2} \right)^{3/2} + \frac{3}{4} \sum_{l=0}^{\infty} (2l+1) \left(\frac{2\pi \hbar^2}{kT m/2} \right)^{3/2}$$

$$\times \left\{ \frac{1}{\pi} \int_0^{\infty} \eta_2 \frac{d}{dE} \left[\exp \left(\frac{E}{kT} \right) \right] - \sum_{\text{discrete}} \exp \left(\frac{-E_{m,l}}{kT} \right) \right\}$$

$$+ \frac{1}{4} \sum_{l \text{ even}} (2l+1) \left(\frac{2\pi \hbar^2}{kT m/2} \right) \left[\frac{1}{\pi} \int_0^{\infty} \eta_2 \frac{d}{dE} \left[\exp \left(\frac{-E}{kT} \right) \right] \right.$$

$$- \sum_{\text{discrete}} \exp \left(\frac{-E_{m,l}}{kT} \right) \right\}.$$ \hspace{1cm} (12)

Here η_2 is the phase shift for the lth partial wave, E is the energy.
of the relative motion of the two particles, \(m \) is the \(\text{He}_3 \) atomic mass (5.0076 \(\times 10^{-24} \) grams), \(T \) is the absolute temperature, \(K \) is Boltzmann's constant, and the \(E_{nt} \) are the energies of the bound states. There were no bound states for the range of the parameters investigated so the sum over discrete states can be neglected.

In practice it is convenient to use Kihara's method in which \(B(T) \) is calculated as a function of the new parameters:

\[
q = \frac{a_2}{a}, \\
s = \left| V_0 \right| (-m/\hbar^2) a_1^2 \left[4 (g-1)^2/\pi^2 \right] \\
\tau = \frac{\pi^2 s K}{4 (g-1)^2 |V_0|} T.
\]

The parameter \(s \) is the effective depth parameter used in nuclear physics by Blatt and Jackson. An electronic computer was used to calculate a quantity \(f(\tau) \) which was proportional to \(T^{3/2} B(T) \) and independent of the \(T/\tau \) ratio. For a particular \(g \) value calculations were performed for various \(s \) values which gave minimum values of \(f(\tau) \) in the vicinity of the theoretically expected minimum value. The lateral spread of the calculated curve when plotted against \(T \) is, of course, dependent on the \(T/\tau \) ratio. Thus if \(f(\tau) \) is normalized to be equal to \(T^{3/2} B(T) \) and the ratio \(T/\tau \) is chosen so that the best comparison is obtained for the two curves the third parameter \(\tau \) is then determined. To check the computation a calculation was first made for \(\text{He}_4 \) with \(g = 1.5, s = 1.0 \), and agreement was obtained with the results of Kihara.

The \(\text{He}_3 \) virial coefficients can be compared with a few measured values in the range of 1.5 - 4.0 \(\times 10^{-4} \) and with theoretical curves calculated for the six-twelve potential and the exponential-six potential.
Results of the fittings indicate that there is a range of g values over which for some s value a fit can be found to the observed data and to the theoretical curves for $B(T)$ in the temperature range from 1° to 10°K.

TABLE I. Herzfeld Potential Parameters determined by fitting of second virial coefficient

<table>
<thead>
<tr>
<th>g</th>
<th>s</th>
<th>T/τ</th>
<th>$a_1(\AA)$</th>
<th>$a_2(\AA)$</th>
<th>$V_o(\circ$K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>0.895</td>
<td>2.39</td>
<td>2.594</td>
<td>3.89</td>
<td>-21.11</td>
</tr>
<tr>
<td>1.75</td>
<td>0.865</td>
<td>2.85</td>
<td>2.386</td>
<td>4.16</td>
<td>-10.82</td>
</tr>
<tr>
<td>2.0</td>
<td>0.845</td>
<td>3.37</td>
<td>2.185</td>
<td>4.370</td>
<td>-7.03</td>
</tr>
<tr>
<td>2.25</td>
<td>0.825</td>
<td>3.81</td>
<td>2.055</td>
<td>4.624</td>
<td>-4.96</td>
</tr>
<tr>
<td>2.5</td>
<td>0.810</td>
<td>4.23</td>
<td>1.95</td>
<td>4.89</td>
<td>-3.76</td>
</tr>
<tr>
<td>2.75</td>
<td>0.795</td>
<td>4.57</td>
<td>1.88</td>
<td>5.16</td>
<td>-2.93</td>
</tr>
</tbody>
</table>

Figure 1 is a typical comparison of the calculated virial coefficients of the Herzfeld potential with the experimental and theoretical values for He$_3$. In Table I the parameters of the Herzfeld potential are listed for various fittings. A general conclusion can be drawn that as g becomes smaller the calculated $B(T)$ curve has excessive curvature and tends to lift up from the He$_3$ and the six-twelve values in the region of ten degrees and of zero degrees. As g becomes larger the Herzfeld $B(T)$ curve is too broad. The
conclusion is that the best set of parameters from the basis of the second virial coefficients alone is that of \(g = 2.0 \): i.e., \(a_1 = 2.18 \text{ Å}, a_2 = 4.370 \text{ Å}, V_0 = -7.03^\circ \text{K} \).

Certainly the second virial coefficients themselves are not a reliable determination for the parameters of a crude potential such as the Herzfeld potential. The virial coefficient expansion is a low density expansion, and the virial coefficients are most sensitive to the long range part of the potentials. It is certainly desirable, therefore, to use other criteria for the parameterization of the He\(^3\) - He\(^3\) interaction.

We know that scattering data for momenta up to values of order \(k_F \) are important in the \(\Lambda_{\infty} \) theory, and we can impose an additional restriction on the potential. We require that the parameters reproduce \(B(T) \) fairly well in the low temperature region and that they also give the proper phase shifts for the lower partial waves near \(k_F \). The set of parameters corresponding to \(g = 2.5 \) is the best of all the sets in Table I in this respect.

A third set of parameters has also been chosen by the criterion that they should reproduce the experimental binding energy and density when a \(\Lambda_{\infty} \) calculation is performed. Taking a binding energy of \(2.53^\circ \text{K} \) per particle and a density parameter \(r_0 \) (defined by \(1/\text{density} = (4/3)\pi r_0^3 \)) equal to \(2.43 \text{ Å} \), we find a suitable choice of parameters to be

\[
\begin{align*}
a_1 &= 1.85 \text{ Å} \\
a_2 &= 3.95 \text{ Å} \\
V_0 &= -10.7^\circ \text{K}
\end{align*}
\]

This potential is intended to phenomenologically compensate for errors inherent in the \(\Lambda_{\infty} \) approximation and in the use of the Herzfeld potential. The strength parameter for this potential is \(s = 1.19 \), which indicates the
presence of a bound state. This is contrary to most data on the He3 - He3 interaction and indicates that the calculations with potentials determined from virial coefficient and scattering data will yield insufficient binding.

There is of course more than one set of three potential parameters which will yield the two experimental quantities of binding energy and density. We find that the core radius is very important in determining the proper density for the system but that the energy can be fit over a range of a2 and V0 values. No attempt was made to find a physical reason for choosing one particular pair of a2 and V0 values in preference to the others and calculations are presented for one member of this set only.

IV. RESULTS

Van Leeuwen and Reiner12 have solved the three-dimensional T matrix equation exactly for a potential made up of an arbitrary number of step potentials in general and for a Herzfeld potential in particular. Their analysis can be applied to the two-dimensional system and the result is the same as if the normalized spherical Bessel functions in their result are replaced by cylindrical Bessel Functions and the square of a1 or a2 at any point is simply replaced by a1 or a2 respectively. Having the exact T matrix enables us to solve equations (7) to (9) self-consistently to obtain the zero temperature bulk properties of the system. This was first done for the three-dimensional system and values of E/N and \(\mu \) were found as functions of \(r_0 \). For the pure virial-coefficient potential corresponding to \(g = 2.0 \) the energy per particle remains positive and has values of \(0.1 \leq E/N \leq 0.2^\circ \text{K} \) at densities corresponding to \(3.5 \leq r_0 \leq 4.0 \, \text{Å} \). The potential based on considerations of both virial coefficient and phase shifts yields slightly more attraction, with \(E/N \approx -0.1^\circ \text{K} \) at \(r_0 \approx 3.25 \, \text{Å} \) at the energy minimum. Thus the \(A_0 \) approximation with the Herzfeld potential fit to virial coefficients and phase
shifts does not seem to be a good approximation applied to the three-dimensional system. These results are in agreement with those of Beck who used separable potentials fit to de Boer phase shifts in a Λ_{∞} calculation. He finds the system is self-bound with a binding energy of -0.04^0K at a density corresponding to $r_0 = 3.25$ Å. Brueckner and Gammel in a different calculation using a realistic two-body potential find $E/N = -0.9^0K$ at $r_0 \approx 2.6$ Å.

When two-dimensional calculations are done with the same potentials the general feature of very weak attraction persists, but maximum binding does not occur until extremely large interparticle separations. The virial coefficient potential ($g = 2.0$) yields a minimum energy per particle of -0.03^0K at $r_0 = 14.8$ Å. The virial-coefficient-phase-shift potential ($g = 2.5$) yields a minimum of energy at $E/N = -0.04^0K$ and $r_0 = 13.3$ Å. Figure 2 illustrates the variation of the energy per particle and the chemical potential with r_0 for the latter potential. Finally when the potential parameters which yield the experimental bulk properties for the three-dimensional system were used were used an energy minimum of $E/N = -1.1^0K$ at $r_0 = 6.15$ Å is found.

Puff and Reiner have obtained an expression for the specific heat of a system of interacting fermions based on the Λ_{∞} approximation. Their result is made up of one term equal to the usual effective mass term multiplied by the momentum distribution factor $\rho(k_F)$ plus temperature dependent correction terms which can give a contribution at absolute zero. Most theoretical calculations of the specific heat rely on the effective mass approximation and due to the inherent limitations of our approximation we also will obtain the specific heat from

$$C = \left[1 + \frac{m}{\hbar^2 k_F} \frac{dV(k_i, \omega_0(k_i))}{dk_i} \right]^{-1} C_{\text{free}}$$

(13)
The ratio of \(\frac{C}{C_{\text{FREE}}} \) was calculated at the energy minimum for the three-dimensional system and the results are \(\frac{m^*}{m} = 1.25 \) for the \(g = 2.5 \) set of parameters, \(\frac{m^*}{m} = 1.27 \) for the \(g = 2.0 \) set, and \(\frac{m^*}{m} = 1.1 \) for the "physical set". These numbers are to be compared to \(\frac{m^*}{m} = 1.88 \), obtained by Brueckner and Gammel.

The calculations in two-dimensions are done over a range of densities and our two-dimensional specific heat as a function of \(r_0 \) is pictured in Fig. 3 for the \(g = 2.5 \) potential. In this case \(m^*/m \) is less than one and approaches one as the density goes to zero. At the point of maximum binding the results are \(\frac{C}{C_{\text{FREE}}} = \frac{m^*}{m} = 0.86 \) for the above set of parameters, \(\frac{m^*}{m} = 0.88 \) for the \(g = 2.0 \) set, and \(\frac{m^*}{m} = 0.60 \) for the "physical set".

V. DISCUSSION

The \(\Lambda_{2\omega} \) theory is an approximation in which an attempt is made to treat two-particle correlations in the medium while replacing the effects of the other particles by an average field. For a dilute system this should be a good approximation and indications are that it is valid for nuclear matter. Helium is however significantly denser than nuclear matter when expressed relative to the respective close packed densities figured according to the respective repulsive core sizes. The calculations presented here along with those of Brueckner and Gammel indicate that corrections to the two-body theory must be incorporated before a theory can be applied to liquid He\(^3\). Bethe\(^{16}\) has shown that when the three-particle problem is treated correctly the result reduces to the two-particle result except when the three particles are close to one another. In that case the wave function is reduced to \(1/3 \) of the more
elementary value corresponding to the fact that the wave function can be
excluded from the strong repulsive core only once.

However the two dimensional system is less dense than the three
dimensional system and a two-particle theory such as Λ_{∞} may be expected to
have more validity in this situation. Our results for the two-dimensional
system probably bracket the true behavior of the system, with the virial
coefficient potential indicating too little attraction and the potential based
on the three-dimensional physical properties indicating too much.

There is a considerable difference between the density of the monolayers
measured by Goodstein and the densities calculated at maximum binding with
the Λ_{∞} approximation. This is not a basic disagreement between theory and
experiment since a great range of densities is available to the monolayer.
With sufficient attraction the substrate could bind the system even though the
two-dimensional system by itself would not be found at the same density.

Goodstein et al. report a coverage corresponding to $r_o \approx 2.0 \, \text{Å}$. Even with the
very attractive phenomenological potential the calculated μ is positive for
$r_o < 4.3 \, \text{Å}$. Our calculations are not applicable at greater densities since a
positive μ results in a more complicated kernel in the T matrix equation. The
energy per particle can be extrapolated to go positive near an r_o of $4.0 \, \text{Å}
and to increase with a decreasing r_o at a rate in excess of a degree Kelvin
per angstrom. If there is, therefore, any validity in the Λ_{∞} model the He3
atoms in the observed monolayer are close enough together to experience strong
mutual repulsion with the large adhesive forces of the substrate holding the
layer together.

The calculated quantity that is to be compared directly with experiment
is the specific heat at the same density as in the experiment. Unfortunately
the only experimental data available are far into the positive μ region of density. The significant thing is that Goodstein et al. report a specific heat proportional to the square of the temperature. The most direct explanation of this is a two dimensional Debye model with collective, phonon-like excitations. The Λ_{∞} calculation is, of course, based on single-particle-like excitations, and the calculated specific heat would be proportional to T. The question arises as to whether a collective-state-excitation model would be appropriate at high densities while a Fermi-liquid theory as Λ_{∞} might become valid as low densities are approached. To answer this question experiments are needed with He3 monolayers with coverages that range from those of Goodstein down to those which correspond to r_{θ} values of 12 Å or more. An observation of a change in the temperature dependence of specific heat as the coverages are decreased would be the most direct evidence of such a change of behavior.

The search for a specific heat linear in T at low densities would be futile if the surface of the substrate is so rough that the ground state wave function of a He3 atom on the substrate were localized. In that case a two dimensional Fermi-liquid model would not apply however low the density. The most direct interpretation of the T^2 specific heat would be that collective excitations occur so that the helium atoms are interacting with each other and are not found to be in localized ground states in which case an exponential specific heat would be expected.

ACKNOWLEDGMENTS

The authors are indebted to Professor L. Wilets for originally suggesting the subject of this paper and for many helpful conversations during the course of the work. They wish to thank Professor R. Puff for helpful discussions and
comments. One of us (T.C.F.) would like to acknowledge the hospitality of the Physics Department at the University of Washington where this work was begun. Numerical calculations were performed on the IBM 7094 computer at the University of Washington, where a grant of computer time was given, and on the CDC 3600 computer at the University of California, San Diego.
REFERENCES

* Work supported in part by the National Science Foundation and the Atomic Energy Commission.

7. T. C. Foster, Phys. Rev. To be published.
CAPTIONS FOR FIGURES

Fig. 1 A comparison of the second virial coefficient multiplied by $T^{3/2}$ calculated for the Herzfeld potentials with the experimental values and with the theoretical values for the exponential-six and for the six-twelve potential.

Fig. 2 Variation of μ and E/N with the separation parameter r_o for the Herzfeld potential ($a_1 = 1.95 \, \text{Å}, a_2 = 4.89 \, \text{Å}, V_0 = 0.76^\circ\text{K})$.

Fig. 3 Variation of specific heat with the separation parameter r_o expressed as the ratio of the interacting to the free Fermi gas for the Herzfeld potential ($a_1 = 1.95 \, \text{Å}, a_2 = 4.89 \, \text{Å}, V_0 = -3.76^\circ\text{K})$.
EXP-SIX (KELLER)
SIX-TWELVE (KELLER)
EXPERIMENTAL POINTS
HERZFELD
Q₁ = 2.185 Å, Q₂ = 4.37 Å, V = -703°K
Q₁ = 1.95 Å, Q₂ = 4.89 Å, V = -3.76°K